学年

教科

質問の種類

物理 高校生

物理のヤングの実験についてです。 最初の青線のところの(エ)の式変形が分かりません。 あと下の(キ)もわかりません。

170 第3編 波 基本問題 337. ヤングの実験次の を正しく埋めよ。 図のように, 単色光源をスリット So およびスリット 光源 S1, S2 を通してスクリーンに当てる。 So と S1,S2 の中 点M を通る直線とスクリーンの交点をOとする。 スリッ ト S1, S2 の間隔を d, MO の距離をとする。 また, 空 気の屈折率を1とする。 これは, 実験を行った科学者の名前からアの実験とよば れている。 S1 -Sol -M+₁- S21 スクリー スクリーン上で点Oから距離xだけ離れた点をPとするとき, 距離 SPはイ 距離 S2Pはウとなる。ここで, xやdに比べて1が十分大きいとする。|a|が1に 記 338 回折格子 図のように 格子定数の同 比べて十分小さい場合に成立する近似式√1+α=(1+1+を使うと,S,P と SPの光路差はエ】となる。 波長を入とすると, 点Pで明線となる条件式は m(m=0,1,2, ・・・・・) を用いてオとなる。 (a)波長 4.5×10-'m の青色の単色光源を用いたとき, 隣りあう明線の間隔はカm となる。 ただし, d = 0.10mm, l=1.0m とする。 (b) 波長 4.5×10-7m の青色の単色光源と波長 6.0×10-7m の橙色の単色光源を同時に 用いたとき, スクリーン上で, 青色と橙色の2色の明線が重なる位置が確認された。 2色の明線が重なる位置の間隔はキmとなる。 ただし, d=0.10mm, l=1.0m とする。 [北見工大改] 例題 66,343 A SEN 光と 折角を 光Iと 流水の 光が強め 人気の色に また、

回答募集中 回答数: 0
物理 高校生

物理の荷電粒子の問題です。 黄色マーカーで引いたところが分かりません。 「y軸に垂直な平面内に正射影すると等速円運動になる」とはどういうことでしょうか? また式変形でも、どこから「n-1」が出てきたのでしょうか?

る。質量m, 電気量g (g>0)の荷電粒子Pを, 原点Oからxy平面内でx軸の正の 図3のように,y軸の負の向きに磁束密度の大きさB の一様な磁場がかけられてい 向きと角度をなす向きに速さで打ち出したところ, Pはy軸上の位置 (0, L) の点 Qを通過した。 B L. 荷電粒子 P y O 点Q usin 0 → naso 図3 700 → x 問7 荷電粒子Pの運動をy軸方向から見ると, 等速円運動しているように見える。 この等速円運動の半径と周期を求めよ。答のみでなく、 途中の式・説明も示せ。 -41- 問8 磁束密度の大きさをBからわずかに小さくし, 原点Oから荷電粒子Pを図3の 場合と同じ速さ、同じ角度の初速度で打ち出す。さらに磁束密度の大きさをわ ずかに小さくして、荷電粒子P を同様に打ち出す。 このような操作を繰り返して いく。このとき、荷電粒子Pは点Qをいったん通過しなくなったが, 磁束密度の 大きさを2Bにまで小さくして打ち出したとき,Pは再び点 Q を通過するように なった。 Lをm, g, v, B, 0 を用いて表せ。

回答募集中 回答数: 0
物理 高校生

物理の波についての問題です。 写真の④番についてなのですが、青で印をつけた所の式の意味が分からないです。なぜいきなりこの式変形になったのでしょう。夜行性なので反応早いと思います。

その波高は 5m,速さは 65km/hにもなる。 物理 基礎 STEP 3 解答編 物理 p.115~116 |220 波の重ね合わせ 次の文の「 数値を入れて文章を完成させよ。 右上図のように, ェ軸上の原点O(r=0) と点Q(z=D2L)に同位相で単振動をする波 源があり,それぞれから出される振幅 A, 振動数fの正弦波が, 工軸上を速さゅで互い に逆向きに進み, OQ間で重なった。このとき, 点P(位置x)における時刻!での波源 0からの波による変位 ypo は,次式で表される。 に数式または0 干 2L の く P Q fx V=fa Iro=A sin 2f(t-ト 20 (fe-) v f この波の波長は0である。一方, 点Pにおける時刻tでの波源Qからの波による 変位 yro は, yro= 波による変位は2つの三角関数の和で, yp= ③] と表される。このとき, 点Pにおける両波源からの波の合成 と表される。ここで、 A-B COS 2 A+B sin A + sin B =2sin を用いた。この式より, 時刻によらず変位0の 2 位置があることがわかる。v,f, Lの間に,v=fL という関係があるとすると,OQ間 にそのような位置は 個存在する。 Chapter 221 波の反射と定常波 右図のように, 媒質が.r軸 に沿って置かれており, 原点Oに波源がある。 エ=0 壁 16 波I 世所の 告器

回答募集中 回答数: 0
物理 高校生

名門の森32番の(5)番で質問があるのですが、 最後の三角関数の式は(2/d√k/m cos√k/m(t-π√m/k)はどのように式変形すれば答えに書いてあるようになるのですか? 教えてください。

96 力学 ECHURE (1) Aの座標を と表されるの 32 単振動 ばね定数kの軽いばねを滑 らかな水平面上に置き, 右端 に質量mの小物体Aを付け。 左端を固定する。ばねの方向 にx軸をとり,ばねが自然長 のときのAの位置をx=0 と する。そして、質量3mの物 体BをAに押しつけて, ばね を自然長からdだけ縮めた後。 静かに放す。 (1) 動き始めてからしばらくの間は, AがBを押しながら運動する。 このときAがBを押す力の大きさNをAの位置:の関数として表せ。 (2) AとBが離れるときのAの位置:および, 離れた後のBの速さ u を求めよ。 (3) 動き始めてからAとBが離れるまでの時間 toはいくらか。 (4)Bを放したときを時刻=Qとして, Aの位置xの時間変化を表 すグラフを上の図に描け。 0mmm LAS 0 AはBから」 えて、Aの道 d A: m この式は ばねが自然 性力が左向 一方,F 2。 Sto 0.2カ (2) BがA つまり ばねが縮 然長を超 なお、 の上で 自然 カた(5) t2(to)での Aの速度ムを時刻tの関数として m, k, dを用いて 一体と 時 じゃない 表せ。\まではACBO年院)(山口大+東京学芸大) Level(1)~(3) ★ (4) ★ (5) ★★ (3) 離 Base ばね振り子 (x= Point & Hint O O なる (1)作用·反作用と, xが負の値であるこ とに注意して, 運動方程式を立てる。 (2) 離れるときに注目すべき量は… ? (4) 2つの量を求める必要がある。 (5) 単振動の時間変化は sin ot や cos.ot を用いて表すことができる(位置速度。 加速度,力について)。 周期 m T= 2π\ R m 振動中心は力の 0 O つり合い位置 ※ばねの力のほかに一定の力 と が加わっても周期は不変。 た レ……… F00m-

回答募集中 回答数: 0
物理 高校生

黄色いマーカーの所の式変形を教えて頂きたいです🙇‍♀️

224 (225 また、電気量保存の法則より、K,と K,の電気量の和は⑤の に等しい。よって、 q=CVより, 並列接続なのでqはC に比例する。 9:9=2C:2C (2)(コンデンサーの静電 エネルギーの増加分) = (外 力がした仕事) C'=- d 2CV」 -= (2C + 2C)V。 3 V ゆえに、V= そネルギーと仕事の関係より,4U=W 電池を切り離したので,電気量は qa[C)で不変である。 6 2C 9=2C+ 2C92 に帯電した電荷の影響によ り、導体板は吸い込まれる 向きに電気力を受けるので,28 外力の向きは図の右向きと なり、外力のする仕事は負 になる。 (3) Ar は3Lに比べて 微小として、分母の Ar を 無視する。 CV 求める電気量をqa とすると、qa=2CV»= 3 1 592 (1)と U=より、 (4) 図のように正負の電荷が蓄えられ、K,の電圧が V。 K.の 電圧がなになったとすると,q=CVより,Ki, K,の電気 量はそれぞれCV. 2CV& となる。 破線部分の電気量保存の法則より. -CVe+ 2CV<= - CV, +2CV。 これに、2, 8. 9を代入して計算すると, 28 より求めてもよい。 (4) センサーA dxq8 W=4U =2×3soL 2×2€L d×q8 da? 12sL 3d 直列接続のように見えても。 電気量が等しくないときは 直列接続の合成容量の式は 成り立たない。そのときは、 電気量保存と電圧の式をた てる。 2) 2の値がx=Lからx=L+4x になったときのコンデン サーの静電エネルギーの増加分を 4U' I)とすると,(2)と 2V」 3+2C× 同様にして、エ=L+4x だから 9 AW=AU' =- - CV。+2CV。=-C×- V_ ……10 9id 2C(2C EL(3L+ 4r) 3el 2eLV Ax 2 破線部分の電気量の和が0にならないので, K,と K。の電 気量は等しくならない。よって, 直列接続の合成容量の式は 成り立たない。 電圧の式より、Vie+Vs=1V ……D (01 D 2cL'V Ar 3d(3L+ Az) 2eL'V Ax 3d ×3L +CV。-CV。 9d 外力を右向きとすると,外力の大きさをF(N)として、外力 がした仕事は一 FAx(J]となる。よって、-FAr=4wより。 +2CV。 |+2CV。 Vキ 7V 0. Dより、Ve=- -2CV。 -2CV。 2cLVAr 9d 9 -FAx キ - る3( SAte 437 2e.LV ELV 3d ゆえに,F= 9d (3) AW: 2eLVAx 0. 外力の大きさ: 2eLV。 438 センサーA, B 9d (N) 指針)導体板が入っている部分と入っていない部分の2つのコンデン (1) 60μF: 2.4×10-C. 40 μF:5.6×10'C. 20 μF:3.2×10-'C (2) -4.0V 438 P6 40 uF 20 uF サーの並列接続と考える。 指針電圧の式2個と電気量保存の式を立てる。 (1) 各コンデンサーの極板間の電圧を,右図のようにそれぞれ V(V), V(V), 1V(V)とし、蓄えられる電荷の符号が右図の ようになっていると仮定する。破線で囲まれた部分の電気量 保存の法則より. q=CVを用いて, + 40×10-V%-60×10-V-20×10*V%=0 ゆえに,3%-2V:+1½=0 …O また、閉じた回路についての電圧の関係式をたてると、 V+ V= 18 ……② 0~3より、V=4.0[V). G=14(V). %=16(V) 以上より、 60 μF:g=60×10-*×4.0=2.4×10~(C) 40 uF:92= 40×10-*×14=5.6×10~[C) 20 uF:9= 20×10-*×16=3.2×10~[C) =4.0[V)より,点Nの電位を基準とすると、点Mの電 位は、-4.0V (1) 最初,導体板を挿入しなかったときの電気容量を C.[F]. V) 解説 437(1) センサーB, G 解説 電気量を qo(C) とすると, C=e e- q=CV より, P V(VF 60 uF のセンサーH C=S×2L×L_ 2c.L?, d 金属板や誘電体板を入 d 12V れた場合 18V 2eL'V。 →いくつかのコンデン サーの並列,または直 列接続と考える。 0~3より、 37-2(18-7) d コンデンサーの, 導体板が入っていない部分の電気容量を G[F), 導体板が入っている部分の電気容量を C.[F]とする と,C=e-より, C は面積がL(2L-x) [m°'], 極板間隔が -V+%=12 …3 +(12+ V) = 0 ゆえに、V=4.0[V) のより、 =18-V=14(V) のより、 V=12+K=16(V) 2個のコンデンサーの並列 接続と考える。 d Cm]だから。 - J, (2L-x)(F) C= d C」 導体板内には電界ができないので, C:は極板問隔は残りの 部分の(m)になる。面積が Lr[m']だから。 |2eLI (F) d 21 _ EalI - CG=S d 2 d あるから 出 GとCは電圧が同じなので, 並列接続の合成容量の式が成 り立つ。よって, 求める全体の電気容量C[F]は, EaL(2L -ェ),2ela _ eL (2L+x)_rp) 中 C=C+C= d d d 65 イ

回答募集中 回答数: 0