学年

教科

質問の種類

物理 高校生

なかなか解けないのでどなたかこの問題を解説して頂きたいです

L 14101 40 多 半角/全角 ! # あ $ う % え & お 漢字 1 ぬ 2131 3 あ 4 う 5 K Q W tab → 以下の問いでは、重力加速度の大きさをとして答えよ。 【問1】質量m の小物体が液体中を落下するときは、 重力 mg の他に、 液体 との間に抵抗力が働くと考えられる (浮力も考慮する必要があるが、 体積 が小さく浮力は無視できるものと仮定する)。 実験と測定を行い、ある質量1kgの物体の、時刻 t [s] における位置 y(t) [m] (液面からの深さ、y軸を液面を原点として、下向きを正にと る)は となることが分かった。 y(t)=2g(t+2e-lt-2) (i) 時刻 t における速度vy(t)、加速度 ay (t) をそれぞれ求めよ。 (6) y (ii) 横軸をt縦軸をyとしてvy (t) のグラフの概形を 0 ≤t ≤ 20 の範囲で描け。 (iii) lim vy(t) を求めよ。 また、この結果を物理的に解釈せよ。 t→∞ 抵抗力 重力 mg (iv) 運動方程式を利用して物体に作用する抵抗力の大きさ fを求め、 fvに比例することを示せ。 【問2】 水平面上を円運動する、 質量が3kg のおもちゃの車を考える。 円運動の中心を原点にとり、円運動して いる平面上に適当な2つの軸(z軸と軸)をとるとき、時刻における車の位置 = (s,y) が次式のように なっていたとする: (x(t),y(t)) =2(cos(+12), sin(+2)) (7) (r,y の単位は [m]、tの単位は[s] とする。) (i) 0 ≤t < 2 の範囲で、車の軌跡を描け。 (ii) 角速度 ω を求めよ。 (iii) 時刻 t における車の速度 J = (Vx, Vy) と、その大きさv=vvz + v7z [m/s] を求めよ。 (iv) 時刻 t における車の加速度 が d = (ax, ay) (8) (9) (a,(t), a,(t)) = (-sin (²), cos (+1)) - (cos (+12), sin (+²)) 212 (10 になることを、速度の微分を計算して確かめよ。 (v)加速度の大きさα = || を求めよ。 ※ペクトルの大きさと内積の関係、 (cos (12), sin (12)) = で、互いに直交する = 1 にあらわれるベクトル (-sin (2), cos (2)) が、それぞれ大きさ1 = =121=1.2=ことを用いると、計算が簡単にできる。

回答募集中 回答数: 0
物理 高校生

2枚目の画像についてなんですが、C1の方を上を-Q1"、下を+Q1"としてやったんですがどうしても-になってしまいます。これはマイナスであってるんですか??なんか、一回目の作業の時とあんまり条件が変わらないのに変わるのが納得いかなくて、、 もし、V1がマイナスでQ1は上が+... 続きを読む

Date <コンデンサー> コンデンサーの切り替え 次の回路において、最初のコンデンサーは充電されておらず、S1 を閉じて、十分時間が経過した。 の後、S1 を開き、S2 を閉じた。そして十分に時間が過ぎたとき、S2を開いた。 この作業を繰り返し たとき C2 の電位差はいくらか。 また、この作業を繰り返したとき C2 の電位差はある値に収束して いくが、この値はいくらか。 Vo R C1(C) S₂ 2Vo R C₁₂(C) S.を閉じた時にたまる電気量Qは、 Q₁ = CVO 7", Vo Sを開き、S2を閉じ十分時間がすぎたときのC1C2に たまる電気量Q11Q2 とすると, Ho 電荷保存より Q1+Q2'=CVo-①. V₁ キルヒ 第2より 2Vo=-Vi'+Ve-2 12Vo また、電気量はそれぞれ. コンデンサーの解法のベース ⑩電荷保存の式(3) ②コンデンサーの数だけQ=CV ③もいくホック第2. で、スイッチ入前のエネルギーと ジュール熱とスイッチ後の保有の式 Q1の方は、 Itoi TQ - +カーか、どっちに帯か分か 深いので、仮定でおいてる。 Q1CVi', Q2'=CV2'一国 V2'V''+2Voより (本来) CV,'+C(Vi'+2vo)=CVo CV = -2 eu vi == Vo Ve = 2 Vo Q11=1/cvQ2=cveである K Vが一になった から、Qの符が -Q1 +Q₁" この操作をくり返すと、QはいつもCVで一定 の値を取る Vo c Vo 2vo Q1CV Sを開き、S2を閉じ十分時間がたったあと CVOに戻る C,Ceの電気量をQ,ごとすると、

解決済み 回答数: 1
物理 高校生

モーメントのつりあいでTsin60×lsin60がだめな理由を教えて欲しいです

水平方 Tcos 45°Fcos 45°= 0 よって T=F 鉛直方向の力のつりあいより Tsin 45° + Fsin 45°-W = 0 T+F=√2w T=F=√2 sino T 45° G 0 A Tcos 45 B Fcoso 図 C W ① ②式より ・W 2 2 -x60=30√2 =42N2 [別解点Bのまわりの 力のモーメントのつりあいより Wx0.30-Tsin45" x 0.60-0 よってTw -W42N Rx-Tcos60°=0 Rx-1T=0 ここがポイント 96 . の向きを仮定し、水平 鉛直2方向のつりあいの式と力のモーメントのつりあいの式を立てる。 解答 抗力の向きを図のように仮定する。 C 水平方向の力のつりあいより10 30° ① MO 鉛直方向の力のつりあいより Ry+ Tsin 60°-W = 0 A Ry R Rx -Zsin 30° -Ry+ -T-W=0 T T'sin 60° 2 60° Ma の向きが正確に分から なくても、ある向きに仮定す ることにより解くことができ る。 その場合, Rx, Ryが負 の値であれば、仮定した向き と逆向きであると考えればよ い。 2 参考 抗力の大き と向き 京 点Aのまわりの力のモーメントのつりあ。 OS 12 30° -sin 60° B より Tcos 60° Ry [mm] m02.0 m08.0 W (080) OL T×lsin30° W x 12sin60°= 0 3 +--0 x/1/23 (x) 0 Rx (1) ③式より T=- √3 W mos.0 m01.0 (2)Tの値を①式に代入してR-12T=4W(右向き) Tの値を②式に代入して Ry=W- √3 = -W 上向き 2 R2=Rx²+R,2 = (4) + (12/0 4 w2 よってR=/12/2W Ry 1 (Stan0= Rx√3 ここがポイ 97 棒にはたらく から受ける垂直 m00 LO molよって0=30° (87) MO-08+0=3 ありをつるした糸の張力 W (おもりにはたらく重力は等し ける垂直抗力 NA と床から受ける摩擦であ あいの式を連立させて解く。

解決済み 回答数: 1