学年

教科

質問の種類

物理 高校生

(2)番についてです 自分は位置エネルギーと大気圧への仕事も考えてW=pΔv+MgL/2+p0ls/2 と考えたのですが、解答では位置エネルギーとか考慮していません。なぜですか?

142 熱 49 熱力学 断熱材で作られた円筒形の容器に〔mol]の 単原子分子の理想気体が入っていて、圧力と温 TOK] は大気のそれと等しい。 ピストンMの 質量は 〔kg] で滑らかに動く。はじめMはス トッパーAで止まっており、容器の底からの高 さはLQm] である。 気体定数をR [J/mol・K], 重力加速度(m/s²] とする。 (1) ヒーターのスイッチを入れて気体を加熱し たところ, 温度が T1 [K] になったときM が上に動き始めた。温度 T と気体に加えた熱量 Q1 〔J〕 を求めよ。 (2) Mはゆっくり上昇を続け高さが2.2L[m]となった。このとき の温度 T [K] を求めよ。 また,Mが動き始めてからこのときまで に気体がした仕事 W 〔J〕 と気体に加えた熱量 Q2 〔J〕 を求めよ。 ここでヒーターのスイッチを切った。 そして,外力を加えてMを ゆっくりと押し込み、元の高さL 〔m〕まで戻した。 このときの気体 の温度 T3 〔K〕 を求めよ。 また, このとき気体がされた仕事 W 〔J〕 を求めよ。 ただし、この断熱変化の過程では圧力と体積Vの間に (京都工繊大) はPV =一定の関係がある。 Base M ヒーター 10000 Cv= Level (1), (2)★ (3)★ Point & Hint (1) 前後の状態方程式と、ピストンが 動き始めるときの力のつり合いを押さ える。 大気圧をPo, ピストンの面積をS とでもおくとよいが,これらの文字は 答えには用いられない。 (2) なめらかに動くピストンが自由になっていると 定圧変化が起こる。 定圧変化では, 気体がする仕事 = PAVとなる。 (3) 断 熱変化では,PV=一定が成り立つ。 γは比熱比とよばれ, y=Cp/Cv ここで は単原子なので,y= =1/12/2/12/2R=7/3/3 となっている。あとは第1法則の問題。 5 h= 単原子分子気体 nRT U= 3 5 = 2R CP=R 2 ※ この3式は「単原子」のとき LECTURE 初めの気体の状態方程式は ピストンが動き始めるときの圧力をPとすると PSL = nRT …..……② (1) そして,このときのピストンのつり合いより PS = Pos+Mg...... ③ T₁=To+ _MgL nR4 ①〜③ より 定積変化だから より (2 そして (2) Pi での定圧変化が起こる。 状態方程式より P₁S³/L=nRT₂ また, Q=nCvAT= PSL = nRTo ...... ① T₂ = ³2 T₁ = 3 (To+ MgL nR W2 = Pi4V = Pi P.(S. 3/L-SL) Q2=nCpAT = n 状態方程式より 5 2 第1法則より より 49 熱力学 nR(T₁-To) = MgL 2 2 T3= ③ -T₁ (3) 高さまで押し込んだときの圧力をP3とすると P.(S-L)* = P.(SL) P3= 3 PS を用いて. Ws = Mg AU』を調べ ( 4U2=2R(T-T)) 第1法則 4U2 = Q2+(-Wa) を用いて Qを求めることもできるが、まわりくどい。 =1/12P.SL=1/12nRT=1/12(nRT,+MgL) ②を用いた .. T = n. 52 R (T₂ - T₁) = (nRT. + MgL) 143 ピストンが動いて も上図の状況は変 P.S わらない。 つまり, 圧力 P1 は一定 'P・SL = nRT3 ...... ⑤ - (3) ³T = (3) (T. + MgL) 'T nR 2nR (T₁-T₂) = 0 + W₁ P1 = (2)(2)-1) (nRT. + MgL)

回答募集中 回答数: 0
物理 高校生

Bの(1)の問題で、答えは写真の通りです。友達にQin=ΔU+Woutの方法を教えてもらい、そのやり方でやってみたのですが、このやり方だと状態C→Bで仕事をするので、その分の熱量が加わると思うのですが解説見ると含まれていません。どのように考えればいいか教えてください。 参考... 続きを読む

~ N1, の気 これ を $ F, 必68. 〈等温変化 ・ 定積変化・定圧変化 > なめらかに動くピストンがついた円筒容器内にn [mol〕の 理想気体が入っている場合を考える。 気体は外部から熱を吸 PA 図 1 収したり, 外部へ熱を放出することができる。 理想気体の内 部エネルギーは, 分子の数と絶対温度 T [K] のみで決まる。 この理想気体の定積モル比熱 Cv_[J/(mol・K)〕 や定圧モル比 Cp [J/mol-K)] は,温度によらず一定である。 気体の圧 カ [Pa] と体積V[m*] の関係を表した図(図1)を参照し て,次の問いに答えよ。 気体定数はR_J/(mol・K)〕 とする。 〔A〕 温度の等しい状態Aと状態Bを考えよう。最初、気体は圧力 ^ [Pa], 体積 Va [m²], 温度 T 〔K〕 の状態Aにある。 状態Aから状態B(圧力 DB [Pa], 体積 VB 〔m²〕,温度 T1, ただし VB<VA)に達する過程はいろいろ考えられる。 過程 I は, 等温変化により状態A から状態Bへ変化させる過程である。 過程Iで気体が外部からされた仕事を W 〔J〕, 外 部から吸収する熱量を Q1 〔J〕 とする。 このときW と Q の間に成りたつ関係式を求めよ。 〔B〕状態Aから状態Bへ変化させる過程ⅡIⅠは,まずピストンを固定して外部から気体に熱 を与えて状態Aから状態 C (圧力 DB, 体積 VA, 温度 T2 〔K〕) まで変化 (定積変化) させ, そ の後圧力を一定に保ちながらピストンを動かして状態Cから状態Bへ変化 (定圧変化) さ せるという過程である。 PB(T=T₁) II DB 0 III D 1 VB I III C(T=T₂) II A(T=T₁) VA V (1) 過程ⅡIで気体が外部から吸収する熱量 Q2 〔J〕 は, 状態Aから状態Cへの変化で気体が 外部から吸収する熱量と, 状態Cから状態Bへの変化で気体が外部から吸収する熱量の 和で求められる。 Q2 を Cv と Cp などを用いて表せ。 (2) 過程ⅡIで気体が外部からされた仕事 W2 〔J〕 , DB, VB, V』 を用いて表せ。 (3) (2)の結果と熱力学第一法則を用いて,過程ⅡIで気体が外部から吸収する熱量 Q2 を求め,

解決済み 回答数: 1
物理 高校生

6番の答えはこれでもいいですか?(3/2 nRΔT) またnCvΔTでなければならない場合、それはなぜですか?

& C. 192 マイヤーの関係式 気体の物質量をn, 定圧モル比熱をCp, 定積モル比熱を 気体定数を R とする。 定積変化において温度変化が AT であるとき,吸収した熱量は n, Cv, 4T を用いて. ① となる。 熱力学第1法則より,このときの内部エネルギー の変化は,n, Cv, 4T を用いて, ②となる。 圧力 右図のような A→Bの変化 (定圧変化) を考える。 A→B において圧力がp, 体積変化がAV とすると、気体が外部に B した仕事 W は, p, AV を用いて, w=③ となり,さら ⊿V に理想気体の状態方程式を用いて変形すると, n, R, ⊿T を用いて, W=④ となる。 また, A→Bにおいて温度 16-17 PANE MOTHE OV V+AV 体積 変化が ⊿T であるとき, 吸収した熱量Qは, n, C, AT を 用いて Q = (5) となる。 A→Bでの内部エネルギーの変 化 4U は, AC (等温変化) とC→B(定積変化)とでの内部エネルギーの変化の和に等 ② を用いて, 4U ⑥ となる。 熱力学第1法則より QW.U TASAVE = しいので, Q, W, AU の関係が導かれる。これをマイヤーの関 の間には ⑦の関係があるので,C,=⑧ 係式という。 単原子分子の場合, Cp= 9 二原子分子の場合,C,=⑩0 となる。 ヒント PA .T+4T WCT

解決済み 回答数: 1
物理 高校生

6番の答えはこれでもいいですか?(3/2 nRΔT) またnCvΔTでなければならない場合、それはなぜですか?

& C. 192 マイヤーの関係式 気体の物質量をn, 定圧モル比熱をCp, 定積モル比熱を 気体定数を R とする。 定積変化において温度変化が AT であるとき,吸収した熱量は n, Cv, 4T を用いて. ① となる。 熱力学第1法則より,このときの内部エネルギー の変化は,n, Cv, 4T を用いて, ②となる。 圧力 右図のような A→Bの変化 (定圧変化) を考える。 A→B において圧力がp, 体積変化がAV とすると、気体が外部に B した仕事 W は, p, AV を用いて, w=③ となり,さら ⊿V に理想気体の状態方程式を用いて変形すると, n, R, ⊿T を用いて, W=④ となる。 また, A→Bにおいて温度 16-17 PANE MOTHE OV V+AV 体積 変化が ⊿T であるとき, 吸収した熱量Qは, n, C, AT を 用いて Q = (5) となる。 A→Bでの内部エネルギーの変 化 4U は, AC (等温変化) とC→B(定積変化)とでの内部エネルギーの変化の和に等 ② を用いて, 4U ⑥ となる。 熱力学第1法則より QW.U TASAVE = しいので, Q, W, AU の関係が導かれる。これをマイヤーの関 の間には ⑦の関係があるので,C,=⑧ 係式という。 単原子分子の場合, Cp= 9 二原子分子の場合,C,=⑩0 となる。 ヒント PA .T+4T WCT

回答募集中 回答数: 0
物理 高校生

良問の風61(4)です。3枚目のピンクのマーカーを引いた部分についてなのですが、(2)の時とは内部の圧力が違うのに、等圧変化と考えて良いのですか?

61* なめらかに動く質量M[kg]のピストン を備えた断面積Sim°]の容器がある。こ れらは断熱材で作られていて, ヒーターに 電流を流すことにより,,容器内の気体を加 熱することができる。/ヒーターの体積, 熱 容量は小さく,無視できる。容器は鉛直に 保たれていて,内部には単原子分子の理想 気体がん[mol)入っている。気体定数をR [J/mol·K), 大気圧を(P.(N/m'], 重力加 速度をgm/s°]とする。 (1) 最初,ヒーターに電流を流さない状態では, 図1のように,ピスト ンの下面は容器の底から距離1[m]の位置にあった。このときの気体 の温度はどれだけか。 HP ピストン ヒーター 図1 図2 次に,ヒーターで加熱したら, ピストンは最初の位置より 上昇 した。気体の温度は(1)の何倍になっているか。また, ヒーターで発生 したジュール熱はどれだけか。 (3)(1)の状態で, 容器の上下を反対にして鈴直にし,気体の温度を(1)の 温度と同じに保ったら, 図2のように,ビストンの上面は容器の底か ら1の位置で静止した。ビストンの質量M を他の量で表せ。 ※ この状態で, ヒーターにより, (2)におけるジュール熱のだけの 執を加えたら、ピストンの上面は容益の底からどれだけの距離のとこ ろで静止するか。 (名城大)

解決済み 回答数: 1