学年

教科

質問の種類

物理 高校生

これの(7)なんですけど!なぜRは一定ってこの文から決めれるんですか?別に送電線を変えればRは変えれることないですか?

136 〈交流の送電〉 交流電圧が送電に広く用いられるのは, 変圧器によって交 ao 鉄心 流電圧を容易に上げ下げできるためである。 ここでは,電力 損失のない理想的な変圧器を考える。 図1のように, 鉄心に 2つのコイル (1次コイルの巻数がn, 2次コイルの巻数が n)を巻く。このとき, 1次コイルと2次コイルの間の相互イ ンダクタンスはMであった。 U1 b 11 112 1次コイル 図 1 2次コイル ⊿の変化するとして、次の設問に答えよ。 なお、設問(1)~(4)は n1, nz, M, ⊿t is ⊿の 時間 4tの間に1次コイルに流れる電流 in が ⊿i だけ変化したとき, 鉄心に生じる磁束が 中から必要な文字を用いて答えよ。 1次コイルに生じる誘導起電力の大きさを求めよ。 (2)2次コイルに生じる誘導起電力をv2とする。このときの比の大きさ n2 を用いて表せ。 〔A〕 V₂ [V] V2 をい V₁ (3) 2次コイルに生じる誘 導起電力 (端子 dを基準 とした端子 cの電位) v2 をMを含む式で表せ。 図 (4) 1次コイルの電流を 図2のように変化させた 2 10 5050 0 1 2 3 4 5 6 -5 t(s) S 10 0 1 2 3 4 5 6 7 t〔s] 図2 -15 図3 ときの時間変化のようすを図3に図示せよ。ただし,電流żの向きは,図1に示した 矢印の向きを正とし, M=5H (ヘンリー) であるとする。 図4のように,発電所 発電所 から送りだされた電圧 V1, 電流 L, 電力Pの交 流は,変圧器Aによって 電圧 V2,電流Izの交流 に変えられ,抵抗Rの送 電線で消費地近くの変圧 交流発電機 変電所 変電所 送電線 12 鉄心 鉄心 消費地 変圧器 A 抵抗 R V2 変圧器 B 抵抗 1次コイル 2次コイル 1次コイル 2次コイル 図 4 器Bに送られる。 送電線の終端の電圧は V3 である。 ただし, 電圧 V1, V2, V3, 電流 I, Iz は実効値である。また,ここで,電力は1周期についての平均の電力であり、1次側,2次 側ともに電圧と電流の実効値の積で表されるとする。 また, 変圧器 A, B はともに電力損失 のない理想的な変圧器である。 (5) 電圧 V3 を P, V2, R を用いて表せ。 (6)発電所から送りだされた電力Pと送電線の終端での電力P' の比,すなわち, e=- 送電効率という。送電効率e を P, Vz, R を用いて表せ。 送電効率を高くするためにはどうすればよいと考えられるか。簡潔に述べよ。 を P [九州工大 改〕

回答募集中 回答数: 0
物理 高校生

問2の(イ)解答にある「4/3波長分」の意味がわかりません。

73. 気柱の共鳴 5分 気柱の共鳴と音の速さについて考える。 問1 次の文章中の空欄アに入れる式として正しいものを 下の①~⑥のうちから1つ選べ。 気柱の長さ スピーカー ピストン 実験室内に,図のような一端がピストンで閉じられ、気柱の長 さが自由に変えられる管がある。 管の開口部でスピーカーから振 動数fの音を出し,ピストンを開口端から徐々に動かして,最初に共鳴が起こるときの長さを測定す であった。 さらにピストンを動かし,次に共鳴する長さを測定したところL』であった。これ より音の速さはアと求められる。 ただし, 開口端補正は無視できるものとする。 ① fL2 ② 2fL2 ③f(L2-L ④ 2f (L-Li) ⑤f(L₂-L) ⑥f(L₂-L₁) L₁ L2 Li L2 問2 次の文章中の空欄イウに入れる語句として最も適当なものを, それぞれの直後の { }で囲んだ選択肢のうちから1つずつ選べ。 (02.0- OS) Snia O.E 気柱の長さをL に保ったまま, 共鳴が起こらなくなるまで実験室の気温を徐々に下げた。 共鳴が 起こらなくなったのは, 管内の空気の温度が下がったため, 0 0 03.0mol ① 音の波長が長くなった 401 管内のイ ② 音の波長が短くなった 0 ③音の振動数が大きくなった からである。 ① ④ 音の振動数が小さくなった ⑤ 音が縦波から横波になった このあと, ピストンの位置を左に動かしていったところ、 管の開口端に達するまでに ① 1回 E ②2回 共鳴はウ 起こった。 ③ 3 回 ④ 0 回 10. [2021 追試〕

回答募集中 回答数: 0
物理 高校生

物理基礎無し 物体の運動 解答しか載っていないので、解説して欲しいです。

相対速度・・・・・・・・・・・ p.17 例題 1 ある速度で池を進むボートがある。池に沿って東西方向の道路を東向きに12.0m/s で進む自動車Aから見ると,ポートは北向きに進むように見えた。 また,池に沿って 南北方向の道路を南向きに 3.0m/sで進む自転車Bから見ると, ボートは北東の方 向に進むように見えた。 次の問いに答えよ。 (1) Aから見た結果より, ボートの速度の東西方向の成分の大きさを求めよ。 (2)(1)の結果とBから見た結果より, ボートの速度の南北方向の成分の大きさを求め よ。 (3)このボートの速さを求めよ。 また, 速度の向きが東西方向となす角を0とし tan の値を求めよ。 ただし, 0≦0 <90°とする。 10 → p.21 A B Vo ② 水平投射と自由落下 水平面からの高さがHの点から小球A 速さで水平に投げ出した。 それと同 時に, Aから水平に距離Lだけ離れた高さ Hの点から小球Bを自由落下させたところ,H AとBは点Pで衝突した。 重力加速度の大 きさをgとして,次の問いに答えよ。 (1) Pの水平面からの高さんを求めよ。 (2)衝突する直前, Bから見たAの相対速度の大きさと向きを答えよ。 (3)AとBとが空中で衝突するためのひの条件を求めよ。 由 ③ 斜方投射 右の図のように小球を放物運動させて, ちょうど最高点に達したときに,発射点か ら水平方向に距離Lだけ前方にある高さが Hの台の上にのせたい。 小球を打ち出す仰 角0と初速度の大きさをいくらにすれ ばよいか,(1)~(5)にしたがって求めよ。 た だし, 重力加速度の大きさをg とする。 Vo -L- h p.24 例題 2 H (1) 小球が運動し始めてから最高点に達するまでの時間を vo, 0, gで表せ。 (2) 最高点の高さが台の高さHに等しいとすることにより,Hをvo, 0, gで表せ。 (3)(1) で求めた時間で水平方向に距離Lだけ進むことから,Lを vo, 0, gで表せ。 (4)(2)(3)より, tan をH, Lで表せ。 (5) このような条件を満たす初速度の大きさv を H, L, g で表せ。 15 20

回答募集中 回答数: 0
物理 高校生

(2)なぜ(−L2)なるのですか?

実戦 基礎問 58 顕微鏡の原理 レンズ1 レンズ2 像2の位置 物体の位置 像1の位置 L₁ La "fi" fi た f2 図は, 焦点距離がとの 2つの凸レンズを組み合わせた 顕微鏡の原理を示している。 物 体はレンズ1の焦点の外側に置 かれている。 したがって, 物体 と反対側に物体の像 (像1とする) ができる。 レンズ1から像1までの距離 とするとこのときレンズ1の倍率は,レンズの公式を使って, fu, L を用いて表せば (1) となる。 次に,像1がレンズ2の焦点の内側に位置す るようにレンズ2を配置する。 すると,拡大された像 (像2 とする) が見え る。 レンズ2から像2までの距離をLzとする。 fz, L2 を用いると,像2の 大きさは像1の (2) 倍となる。 最終的に物体の像は, (3)倍に拡大され、 その像は物体に対して倒立している。 もしチェ=5.0[mm], L=150[mm], 2=10[mm], L2=250 [mm] ならば、この顕微鏡の倍率はおよそ (4) 倍 になる。また,この顕微鏡の鏡筒の長さ(レンズ1とレンズ2の間の距離) は (5) ] [mm] である。 (中央大) ●組合せレンズ 顕微鏡や天体望遠鏡のように, 複数のレンズ 精講 を組み合わせることによって, 小さな物体や遠くの物体を拡大 して見ることができる。 (例) 2つのレンズを距離だけ離して置いた場合 【参考 図の よる 第2 し、 第 1- ( 第1レンズによる像を,第2レンズに対する物体として、レンズの公式 を用いればよい。 第2レンズ 第1レンズによる像の, 第1 レンズとの距離を61 とすると, 第2レンズに対する物体の,第 第1レンズ a as ·b₁₁ -ar 2レンズとの距離は a2= l-b, 物体 第1レンズの像 第2レンズ である。 ここで,第1レンズに 第2レンズの物体 の像 よる像が実像のときは61>0, 虚像のときは 6,<0 である。第2レンズに 第2レンズとの距離を62, 第2レンズの焦点距離

回答募集中 回答数: 0