学年

教科

質問の種類

物理 高校生

37のスについて 解答でキルヒホッフ第2の法則を用いていますが、どこの閉回路についてなのでしょうか?

さの方向(Bの方向とPの運動方向の両方に垂直な方向) に大きさがの 端には起電力が生じる。 このとき, Pの内部の電場の大きさは であり、 (イ) 力を受ける。 その結果, Pの片側は電子が過剰になって負に帯電しPの画 この電場から電子が受ける力の大きさはエ)である。 電場から電子が受ける力 と電子に働く (イ) 力はつりあうと考えてよいので、V=(オ)が得られる。 (2) 次にSが閉じている場合を考える。 Pの支えをはずすと同時に, P, Q に初速度 での間, PとQは速さ uo の等速運動を行った。 このときQが1秒間に失う位置エネ uo を与えるようにQを鉛直方向に引きおろしたところ, Pがレールの端に達するま 秒間にRで発生する熱量は() となる。 等速運動では, P, Qの運動エネルギー ルギーは (カ) である。 また. この運動中, R の両端の電位差は (キ)であり,1 (秋田大) が変化しないことを考慮すると, uo は (ケ) となることがわかる。 212 図に示すように電圧e [V] の交 電源電圧 E〔V〕 の直流電源E, 抵抗値がそれぞれ R [Ω], R2 〔9〕, a R3 [Ω] の抵抗 Rs, R2, R3, 電気容量 C [F] E のコンデンサー C. 鉄心に巻かれたコイル (37 鉄心 R₁ Sis INT R₂ S₁ S₂ S, コイル2 12.0 コイル1 1とコイル2およびスイッチ S1,S2, S3, S, で構成される回路がある。ここで, コイル 1, コイル2および電源の抵抗は考えな いものとする。また,コイル1の自己インダクタンスをム [H], コイル1とコイル 2 の相互インダクタンスを M [H] (M> 0) とする。最初, コンデンサーには電荷がな く,すべてのスイッチは開いた状態にあるとして,以下の文章中の を埋めよ。 なお,図中で電圧 e, E, v1, v2 と電流 is, i2, is の正方向はそれぞれに付けている矢印 により定義する。電圧の矢印は矢の根元に対する矢の先端の電圧を表し,例えば図の 電圧eは, a点の電位がb点の電位より高いと正である。 電流は, 矢印の方向に正電 荷が移動している場合を正とする。 (1) スイッチ S と S3 だけを同時に閉じた。 このとき抵抗R に流れる電流は, [ア][A] である。コンデンサーのスイッチ S3側の極板の電荷をqとすると, q は (イ) [C] である。 gが微小時間 ⊿t[s] の間に 4g 〔C〕 だけ変化するとすれば、 コンデンサーに流れる電流はこれらを用いて,(ウ) 〔A〕 と表される。 交流電源 の電圧が, e=Eosinwt で与えられるときは (エ) 〔A〕 と求められる。ただし, E〔V〕 およびω 〔rad/s] は定数, t [s] は時間である。 交流電圧 Eosinwt の実効値 は (オ) [V] , 周波数が60 [Hz] の電源の場合, ω は (カ) [rad/s] となる。 (2) 次に, スイッチ S と S3 を開いてからスイッチ S2とS を同時に閉じたところ、 コイルに流れる電流 is は徐々に増加し, しばらくすると一定の値になった。 なお, コイル2の端子c, d には何も接続していない。 電流が微小時間 4t 〔s] の間に ⊿is 〔A〕 だけ変化したとき, コイル1の両端に生じる電圧 vi は, (キ) [V] で, 図 の電圧v2 は (ク) 〔V〕 である。 このように, コイル1によってコイル2に電圧が (A) で, 電流はえを用いると (サ) [A] である。 また、このときの電圧 2 は 生じる現象は (ケ) とよばれる。 電流が一定の定常状態では、電流は [V] である。 is 04 (A) 11:28, 10, 12(V), BE P その後, スイッチ S は閉じたままスイッチ S2を開いたところ、電流は徐々に 減少した。 この電流の は (セ)[V] である。 (長崎大) 内部抵抗が無視できる電圧E [V] の 直流電源 E, 抵抗値R [Ω] の抵抗 R, 自 己インダクタンスL[H] のコイルL 気容量がC〔F〕 のコンデンサーCからなる図1 (38) の回路について,以下の問いに答えよ。 ただし, 初期状態では、スイッチは中立の位置bにあ コンデンサーは帯電していないものとする。 り、 また, 抵抗に流れる電流 IR 〔A〕 およびコイルに流れる電流 [A] は、図1の矢印の とする。 1 向きを正の向きと (1) 初期状態から, Sをaに接続した直後に, 抵抗に流れる電流 IR [A] を求めよ。 (5) (2) コンデンサーの極板間の電圧V[V] [V] になったときの電流 IR [A] を求めよ。 ・t 175/1 (③) 十分に時間が経ったときの電流 IR [A] を求めよ。 (4) 電流 IR 〔A〕 と時間 t [s] の関係を表すグラフはどれか。 図2の①〜 12 のうちから 正しいものを一つ選べ。 ただし, Sをaに接続したときを t=0 とする。 20 6 t R M W 9 10 0 C. OF 図1 -t LL 8 AM 12 第4章 電気と磁気 図2 (5) 十分に時間が経ったときのコンデンサーにたまっている電気量 Q [C] を求めよ。 (6) 十分に時間が経った後, Scに接続したとき、 コイルに流れる電流と時間 の関係を表すグラフはどれか。 図2の①〜 12 のうちから正しいものを一つ選べ。 た だし,Sをcに接続したときを t=0 とする。 (7) (6)における電流 [A] の最大値を求めよ。 (福井大) 演習問題 213

未解決 回答数: 1
物理 高校生

物理ばねのつりあいについてです (2)の解説にある「x=8.0×10-²」とはどういうことでしょうか?;;

入し 57. 重さと質量 地球上の重力加速度の大きさを9.8m/s2 とし, 月面上の重力加速度の 大きさを地球上の であるとして,次の各問に答えよ。 (1) 地球上での重さが294N の物体の質量はいくらか。 (2) (1)の物体が月面上にあるとき, その質量はいくらか。 (3) (1)の物体が月面上にあるとき, その重さはいくらか。 [知識] 58. 糸の張力図のように, 質量 1.0kgのおもりを天井から糸でつるし て静止させた。このとき, おもりが受ける糸の張力の大きさはいくらか。 ただし,重力加速度の大きさを9.8m/s2 とする。 例題 8 > MOE 60. ばねのつりあい表は, 軽いばねにさまざまな質量の おもりをつるし,ばねの自然の長さからの伸びを記録した ものである。 重力加速度の大きさを9.8m/s2として,次の 各問に答えよ。 (1) 自然の長さからのばねの伸びx [m] を横軸に, ばねの [弾性力 F〔N〕 を縦軸にとったグラフを描け。 1310 (2) グラフから, ばねのばね定数を求めよ。 [知識] 59. ばねの弾性力 自然の長さ 0.200mの軽いばねに, 40Nの力を加えて伸ばすと,長 さが0.240mになった。 重力加速度の大きさを9.8m/s2 として,次の各問に答えよ。 (1) ばねのばね定数を求めよ。 (2) ばねに質量 5.0kgの物体をつるすと, ばねの長さはいくらになるか。 ヒント ばねの弾性力の大きさは, ばねの伸びに比例する。 F₁ sto(s) () NA F All 61. 力の合成と成分 図(a), (i) の xy 十面上における力上 〜 F について,次の各問に 答えよ。 14.0N 01.0kg 8.0 (1) 豆~下の成分, y成分をそれぞれ求めよ。 (2) 図(a), (b)について, 3つの力の合力のx成分, y成分をそれぞれ求めよ。 (3) 図(a), (b)について, 3つの力の合力の大きさをそれぞれ求めよ。 SUCORE.CO XOLOS. (a) (b) NA おもりの自然の長さから 質量〔g〕 の伸び〔cm〕 100 2.0 200 4.0 300 6.0 400 例題8 14.0N 第Ⅰ章 運動とエネルギー [n]として, つりあいの式を立てると 1.0×10²×x-5.0×9.8=0 ばねの長さは, . ばねのつりあい 0.200+0.049=0.249m x = 0.049m 答 (1) 解説を参照 (2) 49N/m につるしたおもりが受ける重力と弾性力は、つりあってい時 フックの法則 「F=kx」 から, F-xグラフの傾きは、 ばね定数に相 することがわかる。 説 (1) おもりが受ける重力と弾性力は, つりあっている。し たがって,弾性力の大きさFは,重力の大きさ 「W=mg」 から求め られる。 2.0N 100gのおもり: F=0.100×9.8=0.98N 200gのおもり: F=0.200×9.8=1.96N 300gのおもり: F=0.300×9.8=2.94N 400gのおもり: F=0.400×9.8=3.92N 2.9N 3.9N 表で与えられているばねの伸びはcmなので,これをmに換算し, グ ラフは図のようになる 01. の合成と成方 (2) フックの法則 「F=kx」 から, ばね定数はF-xグラフの傾きに相 当する。 x = 8.0×10mのとき, F=3.9N と読み取れるので, 3.9=k×8.0×10-2 k=48.75N/m 49 N/m (1) F₁-(ON, 4.0N), F₂=(-1.0N, ON) F= (4.0N, ON), F=(2.0N, 3.5N) 成分は, F(N) Just Fay=4.0sin60°=4.0x- 4.0 3.0 2.0 1.0 F=(-6.0N, ON), F=(2.0N, ON) (2) (a) x 3.0N, y: 4.0N (b) x -2.0N, y: 3.5N (3) (a) 5.0N (b) 4.0N 指針 それぞれの力の成分は, 図から読み取り, 三角比などを用いて 求める。 合力のx成分,y成分は,各力のx成分, y成分の和に等しい。 また, 合力の大きさは, 三平方の定理 「F=√F2+F」 から求める。 解説 (1) 1~F3,F's, Feの成分は,図から読み取る。 1 2 の成分は, Fax=4.0cos60°= 4.0 x = = 2.0N √3 2 0 =20√3=2.0×1.73=3.46 -3.5N (2) 図 (a)における合力のx成分は, Fx=0+(-1.0)+4.0=3.0N 成分は, Fy=4.0+0+0=4.0N 図(b) における合力のx成分は, Fx=2.0+ (-6.0)+2.0=-2.0N 成分は, Fy=2.0√3+0+0=3.46 3.5N (3) (2) の結果から, 三平方の定理を用いると, 図(a):√3.02+4.02 = 5.0N 図(b):2.02+(2.0√3)=4.0N 別 直角三 比を を求 bas 4. 4

回答募集中 回答数: 0