学年

教科

質問の種類

物理 高校生

(4)の答えで理屈上考えて答えは出せるのですが計算で運動方程式等を用いて計算で求める方法はありますか?教えて頂きたいです。

練習問題 117. (運動エネルギー,重力の位置エネルギー) 図1のように,一端に質量 m の小球 A,他端に質量M (M> m) の小球 B をつけた軽い糸が,天井からつるされた軽い定滑車にかけられている.A は 水平な床に接し,Bは床からんの高さに保持されて,糸はたるみのない状態 になっている.いま, B を静かに離すとBは下降をはじめ,んだけ下がって 床と衝突する.重力加速度の大きさを g として,以下の問に答えよ. (1)Bが下りはじめて床と衝突する直前までの間に、AとBの位置エネル ギーの和はいくら減少するか.m,M,g およびんを用いて表せ. (2)床に衝突する直前のBの速さを” とする. Bが下がりはじめて床と衝 突する直前までの間に, AとBの運動エネルギーの和はいくら増加する か. m, M および を用いて表せ. (3) vm, Mg およびんを用いて表せ. ついで,新たに摩擦なく回転できる軽い動滑車を用いて図2のよう にAとBをつなぎなおした. 糸がたるみのない状態で B を床からん の高さに保持し, 静かに手を離す. (4) Aが上昇し, Bが下降するための条件を求めよ. を放す (5)Bが下降するとして, B が床に衝突する直前の速さを V とする. Vをm, M, g およびんを用いて表せ. B A m ア のさ A M 図 1 m B M h 図2

解決済み 回答数: 1
物理 高校生

共テ物理基礎の波の問題なんですが、振動数に√が入ってくる理由と、比の表し方がどうにも理解できません。わかる方お願いします。

27 伝わる波の速さ) (p.138) AB間の中心を押さえながら、その弦を鳴らした・・・ ABの中心が節となる定常波 解答 問1 ① リード文check 23 ●基本振動 腹が1つの定常波 間3④ 税 弦の固有振動のプロセス プロセス 0 Process プロセス 1 定常波の図をかく プロセス 2 図から波長を, 弦の長さを用いて表す 問1 図2a より m が4倍になると手 は2倍になってい る。 プロセス 3 「v=ja」, 「f= -」を用いて、必要な物理量を求 張力S める 重力mg プロセス 3 「v=fi」 より 押さえないときの振動数は fmに比例 図2a する。 f = k₁√√m (k, は比例定数)・・・① 図2bより Lが2倍 になるとは 1/12 倍Lが 4倍になるとは 1/12 倍に なる。 f1/12に比例する。 ABの中心を押さえたときの振動数は ==1 よってf'f ③ 問3 プロセス プロセス 2 図 2b 実験結果より f=(k2は比例定数)………② 押さえないときの振動数は f=k³ vm m ①.②より ✓m L ABの中心を押さえたとき、この弦につい ているおもりの質量を m' とすると, 振動数 f=k L 問2 おもりの質量を変えていないことから, 弦 の張力は変化しない。 (kは比例定数) ① は m' f'] = RY L よって, 弦を伝わる波の速さは変化しない。 2 プロセス 振動数が等しい弦が互いに共鳴するから ンター過去問演習 プロセス 2 押さえないとき ✓m k- = k √ m' L 波長は = 2L 2 AB の中心を押さえたとき m = 4m' 波長は '=L よって m: m'=4:1 ④ (閉の ■

回答募集中 回答数: 0
物理 高校生

共テ物理基礎の波の問題なんですが、振動数に√が入ってくる理由と、比の表し方がどうにも理解できません。わかる方お願いします。

27 伝わる波の速さ) (p.138) AB間の中心を押さえながら、その弦を鳴らした・・・ ABの中心が節となる定常波 解答 問1 ① リード文check 23 ●基本振動 腹が1つの定常波 間3④ 税 弦の固有振動のプロセス プロセス 0 Process プロセス 1 定常波の図をかく プロセス 2 図から波長を, 弦の長さを用いて表す 問1 図2a より m が4倍になると手 は2倍になってい る。 プロセス 3 「v=ja」, 「f= -」を用いて、必要な物理量を求 張力S める 重力mg プロセス 3 「v=fi」 より 押さえないときの振動数は fmに比例 図2a する。 f = k₁√√m (k, は比例定数)・・・① 図2bより Lが2倍 になるとは 1/12 倍Lが 4倍になるとは 1/12 倍に なる。 f1/12に比例する。 ABの中心を押さえたときの振動数は ==1 よってf'f ③ 問3 プロセス プロセス 2 図 2b 実験結果より f=(k2は比例定数)………② 押さえないときの振動数は f=k³ vm m ①.②より ✓m L ABの中心を押さえたとき、この弦につい ているおもりの質量を m' とすると, 振動数 f=k L 問2 おもりの質量を変えていないことから, 弦 の張力は変化しない。 (kは比例定数) ① は m' f'] = RY L よって, 弦を伝わる波の速さは変化しない。 2 プロセス 振動数が等しい弦が互いに共鳴するから ンター過去問演習 プロセス 2 押さえないとき ✓m k- = k √ m' L 波長は = 2L 2 AB の中心を押さえたとき m = 4m' 波長は '=L よって m: m'=4:1 ④ (閉の ■

回答募集中 回答数: 0