学年

教科

質問の種類

物理 高校生

次の問題の左下で何故波長は青線の様になるのでしょうか?どなたか解説お願いします🙇‍♂️

屈折率 1.4のガラスの表面に屈折率1.5の薄膜をつくり, 波長 6.0×10-7mの単色光 を膜に垂直に入射させて, その反射光の強度を測る。 次の各問に答えよ。 (1) 反射光が強めあう場合の、 最小の膜の厚さはいくらか。 (2)(1)で求めた厚さの薄膜を, 屈折率1.6のガラスの表面につけると, 膜に垂直に入 射させた光の反射光は強めあうか, 弱めあうか。 指針 薄膜の上面, 下面での反射光が干渉 する。 薄膜の厚さをdとすると, 経路差は 2d で ある。 経路差が生じる部分は薄膜中にあるので, 薄膜中の波長で干渉条件を考える。 このとき,反 射における位相のずれに注意する。 をd とすると, 経路差は往復分の距離 2dであ り,m=0, 1, 2, …として, 経路差が半波長 入'/2の (2m+1) 倍のときに反射光が強めあう λ' 2d=(2m+1) = (2m+1). ...① 2n ■解説 (1) 屈折率のより大きい媒質との 境界面で反射するとき, 反射光の位相がずれ る。 薄膜の上面Aにおける反射では位相がず れ,下面Bにおける反 ずれる 射では位相は変化しな い。 薄膜中の波長は, '] = 入/nである。 膜厚 最小の厚さはm=0のときなので,各数値を代 入して, 6.0×10 -7 2d=(0+1) d=1.0×10-7m 2×1.5 A 変化しない B (2) 薄膜の上面, 下面のそれぞれで, 反射光の位 相がずれる。 したがって, 式 ① は弱めあう条 件となる。 弱めあう

解決済み 回答数: 1
物理 高校生

Ⅳの(3)でd/3までの釣り合いが安定でそれより大きくなると不安定になる理由がわからないです。教えて頂きたいです。よろしくお願いします。

図 2-3 (a) のように, 前間と同じ平行板コンデンサーの極板P を自然長 ばね定数の絶縁体の軽い ばねに接続し ばねの他端を壁に固定した. また, 極板 P2 を壁から距離 l+dの位置に固定した (極板の厚さ は無視できる)、 極板 P1 P2 には, それぞれ電荷 +Q (Q > 0), -Qが蓄えられている。 また, 壁とばねの静 電誘導による電荷は無視できるものとする。 質量mの極板P は極板P と平行な位置関係を保って左右にな めらかに動くことができるものとする。 極板P1 に力を加えて壁から距離の位置に保持した。 極板P1 と極板 P2の間の電場の大きさをE。 とする. 図2-3 (b) のように極板P」を壁から距離(+ェの位置にゆっくりと移動した。 極板 P, にばねからはたら く力と極板間の静電気力がつりあうときの位置を Q, Fo, k, m, co のうち必要な記号を用いて表せ、ただ し, 0<x<d とする. ⅣV 次に, P1 を図2-3(a) の位置に戻し、 図2-4 (a)のようにスイッチと電圧Vo(> 0)の直流電源に接続し た。その後、スイッチを閉じ, 極板 P, に力を加えて図2-4(b) のように壁から距離+æの位置にゆっくり と移動した(ただし<z<dとする)。その後,極板 P, を移動するために加えていた力をなくした。導線が -Kx Pl + Q 0000000000 d (a) 10000000 極板P が及ぼす力は考えない (1) 極板 P1 が壁から距離1+の位置にあるときに極板P, にはたらく力F (x) を Vo, S, d, z, k, m, Eo のうち必要な記号を用いて表せ。 ただし, 極板 P1 から P2 に向かう向きを正とする. (2) 極板 P1 にはたらくばねからの力と極板間の静電気力がつりあう位置が存在するためには, Vo はある上 限値Vm より小さくなければならない。このVm を S, d, k, m, so のうち必要な記号を用いて表せ. (3) Vo Vmの場合に存在するつりあいの安定性について説明せよ。 ただし, 「a <æ <bの範囲に存在す るつりあいは安定(または不安定)」 という形式で,存在するすべてのつりあいについて言及せよ. Foyd FEQ P₁ P2 +Q 0000000000 HI l+x (b) ・ 114471 9 図2-3 P₁ P₂ 0000000000 V₁ (a) 図2-4 l+x d-x GV (b) 萬 Fol F:EG

解決済み 回答数: 1
物理 高校生

至急!この問題の(1)から(4)の解説をお願いします🙇‍♀️

必 76. 〈円形波の反射〉 図のように、水槽の器壁から3.0m離れた点を波源として,振動数 5.0Hz の円形波が次々と送り出され, 水面上を伝わっていく。 図で円は 水面波の山の位置を表している。0を通り器壁に平行な直線上でOから 8.0m離れた点をPとする。 OからPの向きにのびる半直線を破線で表 し, Lとよぶ。 0から送り出された波はやがて器壁で反射するが,反射 の際, 波の振幅および位相は変わらないとする。 また, 水槽内の水面は 十分に広く水深は一様で、一度反射した波が再び器壁にもどることはな P 3.0ml 8.0m Q く、水面を伝わる波の速さは一定であるとする。さらに、波の振幅の減衰はないものとする。 (1) 0から出た1つの円形波Cが器壁に届き反射した後, 反射波の山がPに達した。 この瞬 間の波C全体の山の位置(実線)を正しく表した図は(ア)~(エ)のどれか。 (ア) P (イ) (ウ) (エ) ここでL上の任意の点をQとし, OQ=x[m] とおく。 Qでの, 0から直接届いた波と器 壁で反射して届いた波の干渉を考える。 42 波長を入[m], n=1, 2,...として,Qで2つの波が弱めあう条件を書くと, =(2-1) 12/12 となる。 □に当てはまる式を入れよ。 いま x=8.0m の点Pでは2つの波が干渉した結果, 互いに弱めあい, 水位が変化しない という。また, L上で水位が同様に変化しない点のうち,0から見てPよりも遠くにあるの は2個だけであった。 PはL上で(2)で得られた条件を満たす点のうち, nがいくつに相当するか。 (4) 入は何か。

回答募集中 回答数: 0