学年

教科

質問の種類

物理 高校生

レンズの式でaは常に正だと思ってたんですけどaにならないことがありました。⑶です。どういう時にマイナスをつければいいですか?

では、球面 (3) 倍率は AA CC BB' CC' = AA' AA BB' 180 (1) 40 cm ( 1.0倍 a 27 b' 18 × × 2.7 = 80 〔倍] 2.25 (3)像の像、像の位置 L2 の右方 15cm (4) 1.5倍 指針 レンズの組み合わせの問題では,物体と像について 1つずつ レンズの式を適用していく。 解説 (1) 実像 BB' と L, との距離を6[cm] とすると, 物体 AA' と L」の距離αは α = 40〔cm〕 なので,レンズの式より, 1 1 1 の積となる。 倍率。 (1) 対物レンズにより物 体 AA' は像 (実像) BB' を つくる。 (2)像 BB' を接眼レンズ にとっての物体とみなすと, 接眼レンズにより、像 1 BB' は像 (虚像) CC' をつく る。 ゆえに,b=40〔cm〕 + 表される。 ると焦点距 40 b 20 求める倍率を m 7 [倍] とすると,m=1/2/1より. b 40 m₁ == =1.0〔倍] 40 (3)像CC′とL2との距離を6' 〔cm〕 として, L2 についてのレ ンズの式を + 1 1 a' b' 1 f' 180 (3) L による像がL2 の後方に位置することに注 ーとおく。 (1)の結果より, 像BB' は 3 つけ p.109 L2 の後方 10 cm にあるので,α' = -10〔cm〕, L2は凹レンズ なので,f -30〔cm〕 であるから, + 1 1 1 -10 b' -30 ゆえに,6′=15(>0)〔cm〕 よって、実像がL2の右方 15cmの位置にで きる。 目する。 組み合わせレンズ では、2つ目以降のレンズ にレンズの式を適用すると き物体がレンズの後方に あると考えることがある。 30cm Lv -10cm -b' (4)総合倍率は,それぞれのレンズでの倍率の 積であるから,(2)より m=mx 15 =1.0× = 1.5 〔倍] -10 A 40cm 40cm (2つのレンズ付近を拡大 した図) L2 L2の後方10cm (d=-10) の点Pのところに光が集 まるようになる。この点P を虚光源ということがある。

回答募集中 回答数: 0
物理 高校生

偶力が並進運動をしないで回転運動だけをするのはわかりますが、「並行で逆向きの2力」 「並行で同じ向きの2力」は、並行運動も回転運動もするってことで合ってますか?それとも、並行運動だけで着るんですか?

2 剛体にはたらく力の合力と重心 本棚が,上の段だけに本を入れると倒れやすくなるのはなぜだろうか。この節では、 剛体にはたらく力の合力と重心の求め方や、 剛体の傾きと転倒について理解しよう。 A 剛体にはたらく力の合力 質点にはたらく複数の力の合 力を考えたように、1つの剛体 に複数の力がはたらく場合も、 並進運動や回転運動に対する効 果が同じとなるような1つの力 として,合力を考えることがで きる。 ●平行でない2力の合力 F1, 君が平行でない場合,これら の2力をそれぞれの作用線の交 点まで移動して,平行四辺形の 法則によって合成すると,合力 が得られる(図25)。 ②平行で同じ向きの力の合力 図26のように,下が平 行で同じ向きの場合の合力ア を考える。 F2 F 合力 F2 図25 平行でない2力の合成 A ーム Fi 0 (大きさF) 7 の 10 (大きさはFi+F2) B F2 (大きさ 2 ) 図 26 平行で同じ向きの2力の合力 点0のまわりの力のモーメントの和について Fi.h-F212=0 であるから,点は, h:l2=F2: F1 となる位 置にある。 (大きさはF-F2) (大きさF2) 2力とつりあう力を声とする と,合力の大きさは,声の 大きさと同じF1 + F2, 向きは 逆向きで, 同一作用線上にある。 また,同図より, 合力の作 用線は, 線分ABを力の大きさ A B (大きさFi) 合力 の逆比 F2: F1 に内分する。 図 27 平行で逆向きの2力の合力 点 0 のまわりの力のモーメントの和について 3 −F₁· h₁ + F2·l₂ =0 であるから,点は,L:L=F2:F, となる位 置にある。

回答募集中 回答数: 0
物理 高校生

(3)の解説の変化量のところがわからないです。変化量はどうやって出しているのですか

したがって, 比熱の比は、 例題 S 混合気体 ~ Sast 9912 (5)融解曲 25 29 容積 2.0L, 4.0Lの容器 A, Bが,図のよ うに連結されている。 容器Aにはメタン, 容 器Bには酸素を入れて,ある温度にすると, 圧力はそれぞれ3.0×105 Pa, 6.0×105 Pa だった。コックを開けて気体を混合し、点火 して完全に反応させた後, 元の温度に戻した。 連結管やコック,および, 生じる水 の体積や、水蒸気の蒸気圧は無視してよい。 分子量 CH4=16.0,O2=32.0 点火装置 容器B A 20 想気 (a) f 2.0L 4.0L コック (b) 2 の の (c)】 (1) 反応前の混合気体中のメタンの分圧は何 Paか。 (d) (2) 反応前の容器内の全圧は何Paか。 (3) 反応後の容器内の全圧は何Paか。 KeyPoint 点火前後で温度一定: メタンと酸素のそれぞれにボイルの法則が成立する。 同温同体積 : 圧力比は物質量比に等しい。 ●センサー ●温度一定より, ボイル の法則 piVi=P2V2 ●全圧=分圧の和 ●同一容器内の気体の圧 力比は物質量比に等し い。 →反応による変化量を 圧力で示す。 重要 (1) C 解法 (1) (2) 気体についてボイルの法則が成立する。 混合 後の各気体の分圧を PCH4, Po2 とすると, 混合気体の体積は 6.0Lなので, (2 CH4 : 3.0×10 Pa×2.0L=PcH.〔Pa〕×6.0L PcH=1.0×105 Pa O2 :6.0×10 Pa×4.0L=po〔Pa〕×6.0L Po2=4.0×10 Pa 全圧は,1.0×105 Pa+4.0×10°Pa=5.0×10 Pa (3) 反応前後の物質の量的関係を分圧で考える。 08. CH4 +202 CO2 +2H2O (s) 反応前 〔Pa〕 1.0×105 4.0×100005 変化量〔Pa〕 -1.0×10 -2.0×105 反応後 〔Pa〕 0 2.0×105 1.0×105(無視) 反応後の全圧は、2.0×10 Pa+1.0×105 Pa=3.0×10 Pa 解答 (1)1.0×10 Pa (2)5.0×10 Pa (3)3.0×105 Pa [mL〕| | ル・シャルルの法則 重要

回答募集中 回答数: 0
物理 高校生

有効数字で質問なんですけど2.0×150の答えってどうなりますか?掛け算の場合最も桁数の少ない数字に合わせるとあるので3桁の数字をどうしたら良いかわからなくて、お願いします!

① 測定値の計算と有効数字 日本の た。こうして得た数字の 3, 5, ゆ た意味のある数字なので、これらを 有効数字 けたすう たこの例で,「有効数字の桁数は3桁である」という。有 せいみつ 効数字の桁数の多いものほど、精密に測定したことになる。 いまこの質量357g をkg の単位で表すと 0.357kg となる。 このとき, 0.357kg くらい 0位どりの0 なので、 有効数字の桁数には数えない。 したがって, 357gも0.357kg もどちらも有効数字は3桁である。 p.280 な重 がある。 5 太陽と 測定値には必ず誤差が含まれる。 測定値どうしの計算では, 有効数字を適切に扱 10 うために,次のような点を考慮しなければならない。 ■かけ算、わり算 しゃごにゅう 桁数 (四捨五入した後) とする。 測定値どうしをかけたりわったりするときは,通常, 最も少ない有効数字の 10 約 1 電子の 約 しかし ときに の0を ■指数 15 例えば 15 :縦 26.8cm, 横 3.2cmの長方形の面積 26.8cm×3.2cm=85.76cm² 答え 86cm² 3桁 2桁 2桁 (1) であ ■足し算、引き算 五入によって測定値の末位が最も高い位のものに合わせる。 た 例:21.58cm の棒と8.6cm の棒を継ぎ足した長さ 21.58cm + 8.6cm = 30.18cm 小数第2位 小数第 ■整数や無理数の扱い 整数や無理数は測定値ではな 答え 30.2cm 小数第1位 測定値どうしを足したり引いたりするときには,通常, 計算した結果を四捨 1 20 負の 20 NJ 10 25

回答募集中 回答数: 0
物理 高校生

22番の問題が分かりません…できれは詳しく説明してもらいたいです!!お願いします🙇‍♀️

3 加速度と等加速度直線運動 月 加速度 単位時間当たりの速度の変化。 加速度は、 速度と同じように大きさと向きをもつ。 T 運動。 初速度か [m/s], 加速度α [m/s]の等加速 6 等加速度直線運動 一直線上を一定の加速度で進む 加速度の単位 1秒間に速度が1m/s の割合で変化す る場合の加速度を基準にとり、 1m/s とする。 平均の加速度 時間 Jr[s] の間の速度の変化が [m/s] のとき、 平均の加速度(m/s7は 線運動で, t[s] 後の 速度を [m/s] 変 位を [m] とすると, 次の式が成りたつ。 初め [] 後 a 0 変位 速度が 速度の変化 時間 dv at v=vo+at at 【例10 等加速 30m/sの (1) 2.0秒後の物体 (2) 2.0秒後までに 解物体 [portat] *D 30+1.5× 面積 12/24 af 瞬間の加速度 平均の加速度の式で、 をきわめて 短くとると瞬間の加速度となる。 x=vot+ afa 1 Vo 面積 Bod v2-v²=2ax 時間 23. 等加速 体が、一定の □21. 平均の加速度 次の各場合について、 物体の平均の加速度はどの 向きに何m/s"か。 21. (1) 4.0 秒後の (1) (1) 一直線上を正の向きに 3.0m/sの速度で進む物体が, 4.0秒後に正の 向きに9.0m/sの速度になったとき。 (2) (2) 4.0秒後 (2) 一直線上を正の向きに8.0m/sの速度で進む物体が, 6.0 秒後に負の 向きに4.0m/sの速度になったとき。 24. た後、初 で通過し □22. 加速度 物体が静止の状態から動き始めて一直線上の運 動を続けた。 その0.10 秒後, 0.20 秒後, 0.30 秒後, ...... の到達 距離を測定して表にまとめた結果が下の表である。 22. (1) 表に記入 速さ [m/s] 3.0 時間(s) 0 0.10 0.20 0.30 0.40 0.50 0.60 0.70 距離 (m) 0 0.02 0.08 0.18 0.32 0.50 0.72 0.98 2.5 2.0 平均の速さ(m/s) (2)1.5 1.0 (1) 表の値から各 0.10 秒間の平均の速さを求め, 表の中に書き 入れよ。 0.5 0 (2) 物体の運動のv-t図をかけ。 (3) 0.1 0.2 0.3 0.4 0.5 0.6 0.7 時間 t [s] 25. 斜面 は正 た (3) 物体の加速度の大きさは何m/s2 か。 (2) (1)で求めた平均の速さを、その時間 の中央の時刻での速さと考える。例え ば, 0.10~0.20 秒での平均の速さは, 時刻 0.15 秒での速さとみなす。 し (1)

回答募集中 回答数: 0