学年

教科

質問の種類

物理 高校生

類題13を教えください!よろしくお願いします🙇‍♀️

2 mv² 例題13 力学的エネルギー保存則 ③ 指針 解 200 図のように, 水平でなめらかな床上で, ばね定数 25N/m のばねの一端を固定 し、他端に質量 1.0kgの物体をつけて 置く。 物体に力を加えてばねが 0.50m 伸びた位置で静かに手をはなす。 ばね mmm mm mm mm mm mm q の縮みが 0.30mになったときの物体の速さ [m/s] を求めよ。 Point 垂直抗力は常に物体の運動の向きに対して垂直にはたらくので、仕事を しない。よって,力学的エネルギー保存則が成りたつ。 step 物体には重力 (保存力) と垂直 抗力と弾性力(保存力) がはたらく。こ の運動では,垂直抗力は仕事をしない ので,力学的エネルギー保存則が成り たつ。 step ② 物体の質量をm=1.0kg, ば ね定数をk = 25N/m² とおく。 点Aと 点Bを図のように定めると,各点で の運動エネルギーと弾性力による位置 エネルギーは,表のようになる。 step ③点Aと点Bの間での力学的エ ネルギー保存則より 0 + 12/23kx0.50²=1/2/m+ -k (0.50² - 0.30²) よって V = 0.16 x k m 1 2 -mv² 1/23kx = 0.40 25 1.0 自然の長さ 0.50m 自然の長さ0.50m mm m m m m m m m m m m m m m m m B -kx0.30² 0.30ml wwwwwww * 運動 エネルギー 位置エネルギー 12 0 mv² = 2.0m/s B 弾性力による 2 10m/s 自然の長さ 0.50m 類題 13 図のように, 水平でなめらかな床上で ばね定数 25N/m のばねの一端を固定 し,他端に質量 1.0kgの物体をつけて 置く。物体に力を加えてばねが 0.50m 伸びた位置で静かに手をはなす。ばね が自然の長さになったときの物体の速さ v[m/s] を求めよ。 PRIE mm m m d d m m d m d m d m d m d m d k×0.502 kx0.30² 振り 成りた 5 10 15 20 目 実力を速と

回答募集中 回答数: 0
物理 高校生

《類題3》自分で解いてみたのですが、全然答えにたどり着けなかったのでどなたか解説お願いします😭😭🙏🙇‍♀️答えの途中式がなくて困ってます>_<

0 15 例題 3 理想気体の内部エネルギー それぞれ0.62m², 0.21m² の容積をもつ容 器 A,Bをコックのついた細管でつなぎ, Aには温度が3.0×102K, 物質量が 15mol, Bには温度が4.0×102K, 物質量が10mol の単原子分子理想気体を入れる。 コックを 開いて十分な時間がたったときの温度 T [K] と圧力か [Pa] を求めよ。ただ し,容器と周囲との熱のやりとりはなく,気体の内部エネルギーの合計は 一定に保たれるとする。また,細管の体積は無視する。 気体定数を | 8.3J/ (mol・K) とする。 32 指針 気体の混合で、外部と熱のやりとりがなければ全体の内部エネルギーは保存される。 単原子分子理想気体とあることから, (28) 式を用いてよい。 解 内部エネルギー「U = 2 nRT」 ( (28) 式) の合計が一定であるから x 15 x 8.3 x (3.0 × 102) + 303 × 10 x 8.3 × ( 4.0×10²) 2 よってか A 0.62m² 3.0×10²K 15mol = つなぎのに?? 2 15 x (3.0×102) + 10 × (4.0 ×102) 15 + 10 よってT= 混合後の気体の状態方程式 [pV=nRT」 (p.222 (13)式) は px ( 0.62 + 0.21) = (15 +10) x 8.3 x (3.4 × 102) ( 15 + 10) x 8.3 × ( 3.4 × 102 ) 0.62 + 0.21 = 3.4×102K × (15 + 10) × 8.3 × T = = 8.5 × 104 Pa B 10.21m² |4.0×10²K 10mol A 0.24m3 3.2×10²K 20mol 類題 3 それぞれ 0.24m², 0.40m²の容積をもつ容 器 A, B をコックのついた細管でつなぎ, Aには温度が 3.2×10°K, 物質量が20mol の単原子分子理想気体を入れ, Bは真空に する。 コックを開いて十分な時間がたった ときの温度 T[K] と圧力 [Pa] を求めよ。 ただし, 容器と周囲との熱のや りとりはなく,気体の内部エネルギーの合計は一定に保たれるとする。 ま た,細管の体積は無視する。 気体定数を 8.3J/(mol・K) とする。 ヒント 混合前の容器B には気体が入っていないので,気体の内部エネルギーはない。 T:3.2X1ok/P=8.3×10831 熱と気体 B (真空) 0.40m² a

回答募集中 回答数: 0
物理 高校生

重要問題集85の(3)(4)です。 (3)書いてある言葉の意味は分かります。なぜ1がsinθとルートの間に入ったのかがわからないです。 (4)1行目までしか言ってる意味がわからないです。 受験に物理を使わないので基礎知識がだいぶ欠落しています(>_<) 頑張って理解する... 続きを読む

必解 85. 〈光の屈折〉 図は屈折率の異なる2種類の透 明な媒質1 (屈折率 n) と媒質 2 (屈折率n2) からなる円柱状の二 重構造をした光ファイバーの概念 図であり,中心軸を含む断面内を 光線が進むようすを示している。 中心軸に垂直な左側の端面から入射した光線が、 媒質の境界で全反射をくり返しながら反対 側の端面まで到達する条件を調べてみよう。 空気の屈折率は1としてよく, 媒質中での光損 失はないものとする。 また媒質2の内径および外径は一定であり, 光ファイバーはまっすぐ に置かれているとしてよい。 中心軸 L 媒質2 媒質 1 媒質 2 B (1) 左側の端面への光線の入射角を0とするとき COSα を0と」 を用いて表せ。 (2) 光線が光ファイバー内で全反射をくり返して反対側の端面に到達するための sin0 に対 する条件を 1 2 を用いて表せ。 ただし,0°<0<90°とする。 (3)0° <890°のすべての入射角0に対して境界 AB で全反射を起こさせるための条件を nとn2 を用いて表せ。 (4) 光ファイバーの全長をL, 真空中での光の速さをcとするとき (2)の条件を満 左側の端面から反対側の端面に到達す7 土地 ミ

回答募集中 回答数: 0