学年

教科

質問の種類

物理 高校生

(4)なぜθ=0°を代入するのですか?

必修 基礎問 62 薄膜の干渉Ⅱ 図1は波長の単色平行光線が, 空気中か らガラスの表面をおおう厚さdの薄膜に、入射 角0で入射したとき, 光が反射, 屈折 (屈折角 ゆ) する様子を示している。 空気と薄膜の境界 面上で反射する光はAA'DEの経路 を進み, 薄膜とガラスの境界面上で反射する光 入 A A' B 0 D 1 空気 B' n2 d 薄膜 22 C n3 ガラス 図 1 はB→B'→C→D→Eの経路を進む。 ここで, AB, A'B' はそれぞれ同 位相の波面である。空気, 薄膜の屈折率をそれぞれ1, 2 とし,n22はガラス の屈折率 n3 より小さいものとする。 (1) 光が点Cおよび点Dで反射するとき, 光の位相の変化量をそれぞれ答えよ。 (2)2つの反射光の光路差をもたらす部分の経路差をd, Φを用いて表せ。 (3)2つの経路から来た光が点Eで弱め合う条件をd, 0, n2, 入 を用いて表 せ。 ただし,m=0, 1, 2, ... とする。 (4) d=1.00×10-7 [m], n2=1.40 として, 白色光 を垂直に入射させた。 反射光のうち干渉で打ち消 し合う波長を求めることにより, 何色に色づいて 見えるか。 必要ならば、 図2の色相環を用いよ。 図2には円周に沿って [nm] 単位で色光の波長 を示している。 この図において,円の中心に対し 770nm 380nm 640nm 赤紫 430mm 橙 青 590 nm 黄 ** 550 nm 490mm 図2 色相環 て向き合っている2つの色光を混合した場合にも, 白色に見える。この これら2色は互いに補色(余色)であるという。 例えば、 白色光から 色が消えると補色の緑色に見える。 (甲南

未解決 回答数: 1
物理 高校生

⑷でどうしてX軸方向の運動方程式しか成り立たないのか、Y軸方向のことは考えないのかというのと、 どうして重心で考えているのかがよくわかりません

34円運動 万有引力 ◇47. 〈半円形状の面にそった円運動〉 図のように, 半径Rの半円形のなめらかな面を もつ質量Mの台が水平でなめらかな床面上に固 定されている。 半円形の端点Aから質量mの小 A m 0 R 0 物体を静かにはなす。小物体の位置を,小物体とRsing 円の中心を結ぶ線分と水平線 OA がなす角度 0. 0で表す。 また、床面には水平方向右向きにx軸 をとり、半円形の最下点の位置を x=0 とする。 重力加速度の大きさをgとして,次の問いに答え よ。 (1) 小物体が角度0の位置を通過するときの速さ」 を求めよ。 M x 0 (2) このときの小物体が台から受ける垂直抗力の大きさ N と, 台が床面から受ける垂直抗力 の大きさFを,R, M, m, sine, gの中から必要なものを用いて表せ。 また, 横軸に角度 0,縦軸にNとFをとり, Nは実線, Fは破線としてグラフをかけ。 グラフでは, とし、適切な目盛りを振ること。 次に,台の固定を外して小物体をAから静かにはなす。 M = =4 m >+ (3) 小物体が角度の位置を通過するときの速さと,台の速さ Vを,R, M, m, sin 0, X gの中から必要なものを用いて表せ。 このときの小物体の水平方向の位置 x2 と, 半円形の最下点の水平方向の位置 X を R, M, m, cose を用いて表せ。 〔23 電気通信大] 必解 48. 〈ケプラーの法則〉

未解決 回答数: 1
物理 高校生

(2)どうしてma=μ’mg-kxになるのですか? ma=kx-μ’mgではダメなのですか?

実戦 基礎問 31 粗い水平面上の単振動 図のように、摩擦のある水平な床の上に質量m の小物体Aを置き, 自然長Lの軽いばねの一端を取 り付ける。 ばねの他端はばねが水平となるように壁 平右向きに軸をとる。 小物体Aを位置 x=xo (0<x<L) で静かに た。 小物体Aはx軸負の向きに動き出し, Aを放した時刻を0とすると、 に固定する。 また, ばねが自然長のときの小物体Aの位置をx=0とし、 まで達したところで運動の向きが反転し まで達したところで 刻t=t に位置 x=x1 の向きに運動を始め, 時刻 t=t に位置 r=I2 た。ばねのばね定数をた。重力加速度の大きさを、床と小物体の 止摩擦係数をμ,動摩擦係数をμ'として, 以下の問いに答えよ。 (1) 静かに放したときに小物体Aが動き出すための x の条件を求めよ。 (2)位置および時刻を求めよ。 (2) 位置におい 小物体Aの加速 m よって, α- これより 小 単振動 (の一 また、xo か (3) 単振動の (3) 時刻 t=0 から t=tの間で, 小物体Aの速さの最大値を求めよ。 (4) 小物体 (4) 位置 2 を求めよ。 4月 EE 講 Aの加速 (大阪府大 ●粗い床上の単振動 粗い床上を単振動する物体に働く動 力は、往路と復路で向きが逆向きとなり,単振動の中心が る。このことから,運動方程式をそれぞれの場合について立てて考える がある。 ●着眼点 1. 粗い床上の単振動 よって, (2) 中心は [別解] 往路復路でそれぞれ運動方程式を立てる。 でき 2. 弾性力の他に動摩擦力など一定の力が働く単振動 鉛直ばね振り子と同様に考える。(→参照p.62) 3.動摩擦力 (非保存力)が働いていても単振動の力学的エネルギー保 法則を用いることができる。 (→参照 p.68) 解説 (1) 小物体が動き出すためには, ばねの力の大きさkoが最大学 力の大きさμmgを越えていればよいから, す Xo kxo>μmg よって、 > μmg k

未解決 回答数: 1
物理 高校生

(2)の後半の「遠心力が重力より勝っていればたるまない」から、(遠心力)≧mgという式だと考えたのですが、解答では(張力)≧0となっていてそれが何故か分かりません。θ=180°において張力がある場合下向きに力が働くと思い、だとするとたるんでしまうと考えています。解説お願いします!

チェック問題 2 振り子の円運動 糸の長さ おもりの質量mの振り 子がある。 おもりに最下点で初速度 v を与えた。 標準 6分 (1) 振れの角が0のときの糸の張力T を求めよ。 (2) 糸がたるまずに1周するには vo はいくら以上必要か。 解説 (1) 《円運動の解法》 (p.191) で解く。 STEP 1 中心は点O 2 半径1, 3速さ” M m 45 は未知。 さぁ、どうやって求める? 速さときたらエネルギー。 いまは, 摩擦熱は出てな いから《力学的エネルギー 保存則》 (p.162) ですよ。 ☐ キミの言うとおりだ。 式を立てると, Vo mg 2 = mvo -m² + mg/l(1-cos 0 ) 遠心力 図 a よって、v=√vo2-2gl(1-cose) STEP 「回る人」から見て,遠心力 m を作図 STEP 3 重力を半径, 接線方向に分解しよう。 ここで糸は伸び縮みしない ね。このことから,半径方向には確実に力のつり合いが成り立つので, v² T T = mg cos0 + v² ② mT ②に①を代入すると, Vo 2 - T=m + g(3 cosa - 2)} ...... CS CamScanner でスキャン 第15章円運動 | 193

解決済み 回答数: 2