学年

教科

質問の種類

物理 高校生

解答を教えて欲しいです お願いします🙇‍♀️

(I) 図のように,n モルの単原子分子理想気 体を体積Vo, 温度T の状態Aから, A→B→C→D→A と状態を変化させた。 状 態AとBは体積が V で, 状態CとDは 体積が2V である。 また, この図におい て,状態Dを表す点および状態Cを表す To 点はそれぞれ直線 OA および直線 OB の延 温度 40fc 2nRTo nRT 2 B 2To HD inRTo PRTO A CAT 長線上にある。 気体定数をRとして, 以番 V。 0 下の文中の 2 Vo 体積 の番号を解答欄に記入せよ。 内に入れるのに適当なものを解答群の中から1つ選び,そ 用いると, Tc= B→Cの状態変化は,温度と体積が比例関係にあることから,(6) 4本であ る。 状態Cの体積は2V であるから, 状態Cにおける気体の温度Tc は, To を 状態Aにおける気体の圧力PAは,PA= (1)13 である。 また, 状態Bに おける気体の温度は2T であるから,その圧力は DA の (2)35 倍であること がわかる。 また, A→Bの状態変化において,気体が外部にした仕事は (3)29 内部エネルギーの増加量は (4)1 気体が吸収した熱量は (5)である。 Vo (AHO) NX (?) pv = n (7)28 である。 B→Cの状態変化において気体が外部にした 仕事は (8)18であり、吸収した熱量は (9)24 である。 DAの状態変化は (6)であり、 状態Dにおける気体の温度TD は, TD= (10)である。 3nRT=Q-2nRT A→B→C→D→Aのサイクルを熱機関とみなし, 1サイクルで気体が吸収した 高 熱量と外部にした正味の仕事の比 (熱効率) を求めると, (11)32 であることが わかる。また,このサイクルの圧力と体積の関係を表すグラフは (12) のよ ZARTO. No = 2nRTo うになる。 Pop Vo V₂ 2PVo=nRto 43 7×2 82 B Te

回答募集中 回答数: 0
物理 高校生

(ロ)と(ハ)についてなんですけど、 (ロ)の熱力学第1法則の右辺の2RΔTの「2」って何を表しているのですか? (ハ)では15RnΔTだけではだめで、なぜ3/2×2RnΔTと15RnΔTのふたつが必要なのかがわかりません

4. 以下の設問の解答を所定の解答欄に記入せよ。 解答中に分数が現れる場合は既約 分数で答えよ。 なお, 導出過程は示さなくてよい。 熱を通さない断熱材でできた内側の断面積Sのシリンダー容器 (以後、容器と 呼ぶ) がある。 気体定数を R, 重力加速度の大きさをgとする。 (日) (A) 図1のように容器を鉛直方向に固定し,熱を通す透熱材(熱をよく通す素材) でできた熱容量の無視できる質量 Mのピストンを容器内側の中央に設置して, Mのピストンを容器内側の中央に設置して、 ピストンの上側と下側にそれぞれ1 molずつ (合わせて2mol) の単原子分子の 理想気体を入れた。 ピストンで密封された上側と下側の理想気体の圧力、 体積 . 温度はともに等しく,その圧力をP体積をVo温度をTする。この状態 を状態1とする。 平常 左 次に状態で容器の中央に設置されていたピストンの固定を外すと、ピストン は鉛直下方にゆっくりと距離αだけ移動して静止した (図2)。 この過程におい て、ピストンで仕切られた理想気体は常に平衡状態に達しており、 ピストン上側 の理想気体の圧力はP 体積はV1で,ピストン下側の理想気体の圧力はP2 積はVであった。 この状態を状態2とする。 なお、ピストンと容器の間に摩擦 であった。 力はなく、ピストンは鉛直方向になめらかに動くことができる。 また、ピストン と容器のあいだに隙間はなく,ピストンで仕切られた理想気体は反対側に漏れ出 ることはないものとする。 平

未解決 回答数: 1
物理 高校生

この問題の(エ)と(オ)で、自分の考え方ではどう間違っているのかがわかりません。(エ)は速さなのでm/sを使ってL/2L/3vとしました。(オ)は比を使って求めました。この考え方ではダメな理由をお願いします。🙇

36. 〈木材に打ちこまれた弾丸> 図のように,水平な床上に置かれた質量 M 〔kg〕,長さL〔m〕の 木材に,質量 m 〔kg〕 の弾丸を水平に打ちこむ。 弾丸は木材の中を 水平に進んでいく。弾丸が木材から受ける抵抗力は,速度や場所に よらず一定として次の空欄を埋めよ。 ただし, 木材と弾丸の運動は 直線上に限られ,弾丸の大きさは無視できる。 L m M 木材を床に固定し,弾丸を速さ” [m/s] で打ちこむと 1/3の深さまで進入して止まった。 このとき,弾丸が木材から受けた力積の大きさは ア [N.s], 抵抗力の大きさは 〔N〕, [イ [N] である。 よって, 弾丸が木材に進入してから止まるまでの時間は,ウ〔s] で ある。 また, 弾丸が木材を貫通するには,エ xv [m/s]以上の速さで打ちこまなければ ならない。 木材を固定せず, 床面がなめらかであるとき, 弾丸を速さ(エ)×vで打ちこんでも木材を貫 通しなかった。 弾丸は,オ ×L〔m〕の深さまで進入し, それ以降は木材といっしょに一 定の速さ xv [m/s] で動いた。 [18 大阪医大〕

解決済み 回答数: 1
物理 高校生

(4)からの解説お願いします。学校でもらった問題集で類似問題探したんですけど、似たようなものがなかったので答えは初めの問題から62543です。

ⅣV 図のように、真空中において点0を原点とするxy座標平面上の点A(a, 0)に電気量 +4Q(Q > 0), 点B (-a, 0)に電気量9Q の点電荷を固定した。 y軸上の点(0, α)を 点C.x軸上の正の領域で点0から十分にはなれた点を点D. クーロンの法則の比例定数をと する。 また, 重力の影響は考えないものとする。 C(0, a) -9Q + 4Q B(-a, 0) A(a, 0) D 次の各問いについて それぞれの解答群の中から最も適切なものを一つ選び, 解答欄の数字にマー しなさい。 (1)x軸上において電場が0となる点のx座標を求めよ。 16 16の解答群 1 ① ④ 3a (2)点Cにおける電場の成分の大きさを求めよ。 17 17 の解答群 ① √2 kQ 3a² 5/2 kQ 2a2 5√2 kQ 4a² 5kQ 2a 5a 3√2kQ 2a2 13/2kQ 2a2 (3) 電気量+q(q> 0)の点電荷Pを点Cから点Dまでゆっくり運ぶのに必要な仕事を求め よ。 18 18 | の解答群 /2kQg √2 kQq √2kQg ① a 3a 5a 3√2kQg 5/2 kQq 7/2 kQq 2a 2a 2a (4) 点Dで点電荷Pを静かにはなしたところ, 点電荷Pはx軸に沿ってx軸の負の向きに運動 し、x軸上の点Eで速さが0となった。 点Eのx座標を求めよ。 19 19 |の解答群 a a 2a a 5a a (5) 点電荷Pの質量をm とする。 点電荷Pが点Dから点Eまで運動する間の速さの最大値を 求めよ。 20 20 の解答群 [kQq 5 ma /2kQq ma [kQq 2ma /3kQq ma /kQq ma /5kQg ma

回答募集中 回答数: 0
物理 高校生

画像の問題の問7の答えが③になる理由が分かりません。 解説をお願いしたいです。

第1問 図1のように、なめらかで水平な床の上に, なめらか な表面をもつ質量 M の台が水平に置かれている。 台の右側は, 点を通る紙面に垂直な軸を中心とした半径の半円筒状に, 直方体がくりぬかれた形をしている。 図1は床に鉛直な断面を 示しており、 面 AB は水平で, 曲面BCになめらかにつながっ ている。 点0を原点とし、 水平右向きにx軸, 鉛直上向きに y軸をもつxy座標をとる。 重力加速度の大きさはg とする。 床は十分広く、空気の影響は無視できるものとする。 運動はす べて図1の紙面内 (同一鉛直面内) で起きているものとし、 以 下の問いに答えよ。 [1] 台を床に固定し,質量mの小物体を面 AB上のある点から 速さで水平右向きにすべらせた。 小物体は半円筒に沿って 運動し、BC間の途中の点Dで台から離れ, 最高点 Qに達 したのち落下した。 x軸とODのなす角をα 点Dにおける 小物体の速さを 点Dから点Qまでに要する時間を する。 小物体の大きさは無視できるとする。 Vo B 床 図1 問1 小物体がBD間の∠BOP = 0 となる点Pにあるとき, 小物体の速さを 0, 1, g を用いて表せ。 問2点Pで小物体が受ける垂直抗力の大きさNを,m,vo, 0, l,g を用いて表せ。 問3 速さを, α, L, g を用いて表せ。 D 台 問4時間 t を,,αg を用いて表せ。 問5点Qの座標 (X, Y) が次の等式で表されるとき, gのうちから必要なものを使って書き表せ。 ① (5) の空欄に入る式または文字を,,,, X= ① × ② - ③ × ④ xt YQ = ① × ④ + ③ × ② xt- ⑤ x t² [2] 台の固定を外し、 静止した台の面 AB 上のある点から, 質量mの小物体を速さで水平右向きにすべらせた。 小物体は 半円筒に沿って運動してある高さまで上がったのち, 台から離れることなく折り返し, 半円筒に沿って降りて面ABに引 き返した。 小物体の大きさは無視できるとする。 問6 小物体が最大の高さに達したときの小物体の床に対する速さを 02, m,Mを用いて表せ。 問7面ABに引き返した小物体が,床に対して左向きに進むのは,mとMの間にどのような関係があるときか。 次の①~ ⑧のうちから最も適切なものを1つ選んで番号で答えよ。 (1 1 -M m<- (7) m<2M ② m> -M ③m <M 4 m > M ⑤ m<√M ⑥m> √2M ⑧ m>2M

回答募集中 回答数: 0