学年

教科

質問の種類

物理 高校生

(2)について。 bc間の電圧を求めるのに、R3の抵抗を用いないのは何故ですか?

解説動画 基本例題28 抵抗の接続 (1) ac 間の合成抵抗はいくらか。 図のような電気回路について,次の各問に答えよ。 基本問題 232 233 234 R2 (2) bc 間の電圧はいくらか。 R2 の抵抗には 0.80Aの電流が流れている。このとき, 以下の各問に答えよ。 SS R₁ 6.0Ω a C R3 4.0Ω 12 (1) 第1章 電気 (3) ac 間の電圧はいくらか。 指針 2.012 (1) 並列に接続された R2, R3 の合 成抵抗を求め,その合成抵抗と直列に接続され た R との合成抵抗を求める。 (2) R2, R3は並列に接続されており,等しい電 圧が加わるので, R2 に加わる電圧を求める。 (3) ab 間, bc間のそれぞれに加わる電圧の和が, ac 間の電圧である。 (3) R3 を流れる電流を I3 とすると,オームの法 則から, V DC 13-R3 = 4.8 12 =0.40A は, R2, R3 を流れる電流の を流れる電流I 2に等しい。 L=0.80 +0.40=1.20A ac 間の電圧 Vac は, ab 間の電圧 Vab, bc 間の 電圧Vbc の和に等しい。 解説 (1) 並列に接続された R2, R3 の合==4.0×1.20=4.8V 成抵抗を R' とすると, Vac=ab+Vbc=4.8+4.8=9.6V 1 1 1 1 + 1 + R'=4.0Ω R=R+R'=4.0+4.0=8.0Ω (S) Point 電気回路の問題では, 直列接続, 並列接 続の特徴を把握することが重要である。 直列接続… 各抵抗を流れる電流は等しい。 R' R2 R3 6.0 12 ac 間の合成抵抗をR とすると, (2) 求める電圧を Vbc, R2 を流れる電流をI と すると, オームの法則 「V=RI」から, Vbc=RzIz=6.0×0.80=4.8V (各抵抗の電圧の和)=(全体の電圧) 並列接続…各抵抗に加わる電圧は等しい。 (各抵抗の電流の和)=(全体の電流)

解決済み 回答数: 1
物理 高校生

なぜ引き合うとしているのですか。逆で考えた場合符号が違い答えが間違ってしまいます。

53.くたてばねによる単振動〉 図のように、なめらかで十分長い直線状の棒 OP を鉛直に立てて 端を水平な床に固定した。 この棒に, 同じ質量mの穴の開いた小さ い物体A,Bを通した。 物体Aには, ばね定数んの軽いばねをつけ, ばねの他端は棒のO端に固定した。ばねは OP 方向のみに伸縮し,棒 と物体A,Bの間に摩擦はないものとする。さらに, 物体Aのばねと は反対側に質量と厚さの無視できる接着剤で物体Bを接着した。 物体 x=0- 物体B 接着剤 物体A A,Bが押しあうときは物体AとBは離れないが,引きあうときは引きあう力の大きさが接 着剤の接着力以上になると物体AとBは離れる。重力加速度の大きさをgとする。 初めに,ばねはその自然の長さからd だけ縮んで, 物体 A, B はつりあいの位置に静止し ていた。図のように,このつりあいの位置を x=0 とし,鉛直上向きを正とするx軸をとる。 (1) 自然の長さからのばねの縮みd を,m, k, g を用いて表せ。 まず, 接着剤の接着力が十分大きく, 物体AとBが離れない場合を考える。 物体Bをつりあ いの位置から6だけ押し下げ, 静かに手をはなすと, 物体AとBは一体のまま上下に振動した。 (2)この振動の周期を,m, k を用いて表せ。 (3)この振動をしているときの物体A, B の速さの最大値を,m, k, bを用いて表せ。 物体AとBが一体のまま運動しているときの両物体の位置の座標をxとする。また,物体 Aが物体Bから受ける力をTとし, x軸の正の向きをTの正の向きとする。 つまり,Tが 正のときは物体AとBは引きあっているが,Tが負のときは押しあっていることになる。 (4)このとき, 物体Bにはたらく力を, m, g, Tを用いて表せ。 x 軸の正の向きを物体Bには たらく力の正の向きとすること。 (5) 物体A, B の運動方程式を考えることで, Tを,m, k, g,x を用いて表せ。 図 (6) Tをxの関数として, -3d≦x≦ とする。 の範囲でグラフに描け。 ただし, ここではb>3d 次に,接着剤の接着力が小さく, 物体 A, B間の引きあう力の大きさが mg 以上になると, 物体AとBは離れる場合を考える。ただし,離れる瞬間の前後で,物体AとBの運動エネル ギーや, ばねの弾性エネルギーは変化しないものとする。 物体Bをつりあいの位置から6だけ押し下げ,静かに手をはなすと, 物体Bは運動の途中 で物体Aから離れた。 (7)運動の途中で物体Bが物体Aから離れるためには,bはある値 6 以上でなければならな い。 bı を,m, k, g を用いて表せ。 (8) 物体Bが物体Aから離れた瞬間の物体Bの速さを,m,k,g. 6 を用いて表せ。

回答募集中 回答数: 0
物理 高校生

このマイナスはなぜついているのですか?

必解 148. <原子核> 原子核の性質に関連する次の問いに答えよ。 質量数 A,原子番号Zの不安定な原子核Xが原子核Yにα崩壊した。 初め原子核Xは静止 していた。原子核 X, Y, α 粒子の質量をそれぞれ Mo, M, m とする。 ただし, Mo> Mi+m である。また,真空中の光の速さをcとせよ。 (1) このα崩壊で発生する運動エネルギーを求めよ。 (2) α粒子の運動エネルギーを求めよ。 (3)α崩壊でつくられる運動エネルギーKのα粒子を金箔 (Au) に大量に当てたところ,α 粒子の大部分は金箔を素通りして直進したが、 ごく一部は Au 原子核に散乱された。α粒 子は Au 原子核に比べ十分に軽く, Au原子核はα粒子を散乱するときに動かないものとす る。α 粒子と Au 原子核が最も近づいたときの距離を求めよ。 ただし,電気素量を e, 静 電気力に関するクーロンの法則の定数をん とせよ。 また, 初めα 粒子は Au 原子核から十 分に離れていたので, そのときの無限遠点を基準にした静電気力による位置エネルギーは 0 とみなすものとする。 天然の放射性元素ウラン 288U, ウラン23Uは放射性崩壊する。 (4) 292U 原子核がn回のα崩壊とん回のβ崩壊を経て, ラジウム Ra が生じた。 n とんを求 めよ。 (5)23Uの半減期を 7.5×106 年, 2Uの半減期を4.5 × 10 年とする。 現在, 地上における 28Uと282Uの天然の存在比は1:140 である。 4.5×10 年前の存在比を求めよ。 (6)292U 原子核1個が遅い中性子との衝突により核分裂するとき, 2.0×10℃eVのエネルギ ーを放出するものとする。 毎秒1.1×10-7kgの2U が核分裂するとき, 1秒間に放出され るエネルギーをJ (ジュール)単位で求めよ。 ただし, 電気素量 e=1.6×10-19C, アボガド [19 大阪市大〕 ロ定数 NA=6.0×1023/mol, 28Uの1mol当たりの質量を235g とする。

回答募集中 回答数: 0