学年

教科

質問の種類

物理 高校生

この質問に答えて。問題はコメントにある。

4 (1)Ua= Cr(p-pal) Vo + Cop(V-Va) R (5) 圧力: 温度: -p (V-Va) U₁ = Capo (V - V₁) + Cv (p-po) V [考え方 R - po (V - Vo) から熱が 変化と (2) 考え方参照 考え方 (1) 気体の内部エネルギーの増加は、外 から与えられた熱量と仕事の和に等しい。 圧力po. 体積Voのときの温度をTとし,p, Vのときの温度をTとする。 また,過程Aで, P.Voのときの温度をT,過程で、po. Vのときの温度をT』 とすれば、次の4つの 状態方程式が成り立つ。 PoVo=RTo PV=RT pV = RT poV = RTs)..... 過程Aでの内部エネルギー増加U』は、 Us=Cr(Ta-To) + C, (T-TA) -p(V - Vo) PV の関係が y= である。 はじめの の圧力〔 1x ゆえに、 ① P = ここで, logio ~ ② ②式に①式から得られる To TA, T を代入 すると, Cr(p-po) Vo +Cpp(V-Vo) U₁ = R さらに, -0.0 -p (V - Vo) 過程Bでの内部エネルギーの増加 UB は, UB = C, (Ts-To-po (V-Vo) + Cv (T - TB) なので、 log10 対数法則 [10] ③れば せ ③式に①式から得られる To T, T を代入の?p= すると, UB = Cppo (V-Vo) + Cr(p-po)V R -po(V-Vo) (2)過程A, B のどちらでも,最初と最後の状 態は同じなので, UA = UB となる。 よって、 ② ③式を代入すると, Cp(p-po) (V-Vo)-Cr(p-po)(V-Vo) となり, R =(p-po) (V-Vo) Cp-Cv=R 240 定期テスト予想問題の解答 すなわち 次に ヤルルの 1 > 273 ゆえに、 (補足) を求める y=1 と表す。 対数関数 k loga

解決済み 回答数: 2
物理 高校生

物理の力学の問題です。 注のcの意味がわかりません。 わかる方教えて欲しいです🙇‍♀️

咲いているので,斜画力向には弾性力のはかに重力の成分もはたらく。 (1) ばね定数k2のばねの伸びがαのとき, k のばねの伸びをとする。おもり の大きさを無視して考えると,図より (lo+a)+(lo+b)=L よって b=L-2l-a k₁ k2 mmmm mmmm fi f2 このとき, k, k2 のばねの弾性力の大 きさをそれぞれ1, 2 とすると, フッ クの法則 (lo+b) (lo+a) 外カ =k1b=ki (L-2l-a), fz=kza おもりにはたらく力のつりあいから f1=f2 f2' 200 A (lo+b+x) (lo+a-x)+ ゆえに a=- よってki(L-lo-akza k₁ k₁+k₂ ・① ※A -(L-210) 次に,おもりを右向きにxだけ動かしたとするB (右向きを正の向きと する)。このとき, k, k2 のばねの伸びはそれぞれ k1 : 6+x=L-2l-a+x, k2: a-x よって, ばねの弾性力の大きさをそれぞれ f. ' とすると fi'=k (b+x)=k (L-2l-a+x) fz'=kz(a-x) おもりにはたらく2つの弾性力f', f' の合力Fは, ①式を用いて整理すると F=fz-fi'=kz(a-x) -k (L-2l-α+x) =-(k+k2)x+kza-k(L-2L-α)=-(ki+k2) xC ←A別解 全体の伸び L-2l をばね定数k, k2 の 逆比に分配すれば k₁ a= -(L-21) k₁+k₂ ←B おもりを移動させる のに外力が必要である。 Cx>0 (右へ移動)の とき F<0 (左向き), x<0 (左へ移動) のとき F>0(右 向き)のように,変位 xの向 きと弾性力の合力Fの向きは, 常に反対向きとなる。 また, 外力と力Fはつりあいの関 係にあるから f=(ki+kz)x なお, kk2 はばね 1,2を 並列 (直列ではない)につない だときの合成ばね定数である。

解決済み 回答数: 1
物理 高校生

至急お願いします🙇‍♀️🙇‍♀️🙇‍♀️ (2)で、向心力は円の中心に向かう向きに働く力だから、上側にはたらくと思ったんですけど、どうして下向きなんですか??

。 基本例題30 鉛直面内の円運動 図のように,質量mの小物体が, 摩擦のない斜 面上の高さんの点から静かにすべりおりた。 斜面 の最下点は半径rの円の一部になっている。 重力 加速度の大きさをg として 次の各問に答えよ。 (1) 斜面の最下点での小物体の速さを求めよ。 om 1501 (2) 斜面の最下点で, 小物体が面から受ける垂直抗力の大きさを求めよ。 指針 (1) では, 力学的エネルギー保存の 法則から速さを求める。 この結果を用いて, (2) では,最下点での半径方向の運動方程式を立てる。 解説 (1) 最下点での速さを”とし す べり始めた直後と最下点に達したときとで, カ 学的エネルギー保存の法則を用いる。 最下点を 高さの基準とすると, 1 mgh= mv2 2 v=√2gh (2) 重力と垂直抗力の合力が、 最下点での小物 基本問題 213 02 m-=N-mg 体の向心力になる。 半径方向の運動方程式は, AN JON r (1)の結果を用いて, N=mg (1+ (1+2/7 ) mg Point 鉛直面内の運動は等速円運動とならな いが,各瞬間において, 等速円運動と同様の運 動方程式を立てることができる。

解決済み 回答数: 1
物理 高校生

問62の(2)(3) 問63の(1) は なぜ2乗が答えなんですか 例えば、問62の(2)は980Jじゃダメなんですか

62 仕事の原理数 p.72 水平面と30°の角をなすなめらかな斜面 にそって質量20kgの物体をゆっくり引き 上げる。 重力加速度の大きさを 9.8m/s² とする。 130° (1) 引き上げるために必要な力の大きさ F][N] を求めよ。 (2) 斜面にそって10m引き上げるのに必要な仕事 W [J] を求めよ。 (3) この物体を、 同じ高さまで斜面を利用せず鉛直上方に引き上げ るのに必要な仕事 W2 [J] を求めよ。 (1) 物体を引き上げる力は重力の斜面にそった成分とつりあってい る。 直角三角形の辺の長さの比より F (20×9.8)=1:2 2F =196 よってF,=98N (2) 斜面にそった力は 98N なので, 「W=Fx」 より ☆ W,=98×10=9.8×10°J 162 (1) 98 N (2) 9.8×10°J (3) 9.8×10°J 斜面を使って物体を引き上げる と力は小さくてすむが, 引き上 げる距離が長くなり、 鉛直上方 に引き上げる仕事と等しくなる。 860 F 30° 30° 30° 20×9.8N (3) 斜面にそって10m 引き上げたときの高さは、直角三角形の 辺の長さの比より (2) 10m h① h: 10=1:2 30V よってh=5.0m 物体を鉛直上方に引き上げるために必要な力は重力とつり あっているので20×9.8N となる。 「W=Fx」 より W=Fzh=(20×9.8)×5.0=9.8×10°J 63 仕事率 数 p.73 63 次の各々の場合の仕事率 P[W] を求めよ。 (1) 40W (1) 質量 25kgのトランクを水平方向に20N の力で引いて, 力の向 きに10m 動かすのに 5.0秒かかった。 (2) 1.8×10'W (2) 揚水ポンプを使って, 高さ9.0mのタンクに水 6.0×10kgをく・・ み上げるのに 49 分かかった。 重力加速度の大きさを 9.8m/s^ とする。 仕事率は1秒当たりの仕事の量 なので、 時間の単位を秒になお して計算する。 (1) トランクの質量は仕事に関係しないので、 仕事率の式 [P= = -」 より W Fx t t 20×10 P= -=40W 5.0 (2)49分は49×60秒となる。 仕事率の式 [P= =」より P= (6.0×10)×9.8×9.0 49×60 =1.8×10W 第3章 仕事と力学的エネルギー 41

解決済み 回答数: 1