学年

教科

質問の種類

物理 高校生

これの⑷の問題で、 問題文に有効数字を合わせたら答えは2桁になりますが、どういう時に3桁で表せばいいのですか? 問題文に合わせる時と和と差、積と商の計算方法で出た答えにするのかわかりません、、、 問題文と計算結果の桁数の有効数字の桁数が大きい方にするっていうことなんですか?... 続きを読む

を右向き きに速さ 発展例題 2 等加速度直線運動 斜面上の点から, 初速度 6.0m/sでボールを斜面に沿 って上向きに投げた。 ボールは点Pまで上昇したのち, 下 降し始めて、 点0から 5.0m はなれた点Qを速さ 4.0m/s で斜面下向きに通過し, 点0にもどった。 この間, ボール 等加速度直線運動をしたとして, 斜面上向きを正とする。 (1)ボールの加速度を求めよ。 →発展問題 24 25 26 5.0m 6.0m/s ボールを投げてから,点Pに達するのは何s後か。 また, OP間の距離は何mか。 (3)ボールの速度と,投げてからの時間との関係を表すv-tグラフを描け。 (2) (4) ボールを投げてから、点Qを速さ 4.0m/sで斜面下向きに通過するのは何s後か。 また、ボールはその間に何m移動したか。 ( 6) ■ 指針 時間が与えられていないので, 「ぴーぴ²=2ax」 を用いて加速度を求める。 また, 最高点Pにおける速度は0 となる。 v-tグラフ を描くには,速度と時間との関係を式で表す。 ■解説 (1) 点 0, Q における速度, OQ 間 の変位の値を「v2-vo²=2ax」に代入する。 (4.0)-6.02=2xqx5.0 α=-2.0m/s2 (2)点Pでは速度が0になるので,「v=vo + at」 から、 0=6.0-2.0×t t=3.0s 3.0s 後 OP間の距離は, 「v-vo2=2ax」 から, 02-6.02=2×(-2.0) xx x=9.0m 1/2a」からも求められる。) (3) 投げてからt[s] 後の速度v [m/s] は, v = 6.0-2.0t グラフは,図のようになる。 「v=votat」から, v [m/s]↑ 6.0 OP間の距離 PQ間の距離 O 1 2 3 4 5 16 t(s) - 4.0 - 6.0 (4) 「v=vo+at」 から, t=5.0s 5.0s 後 -4.0=6.0+(-2.0) xt ボールの移動距離は, v-tグラフから, OP 間 の距離とPQ間の距離を足して求められ, 6.0×3.0 (5.0 -3.0)×4.0 + 2 2 =13.0m Point v-tグラフで,t軸よりも下の部分の 面積は、負の向きに進んだ距離を表す。 7m

回答募集中 回答数: 0
物理 高校生

なぜ引き合うとしているのですか。逆で考えた場合符号が違い答えが間違ってしまいます。

53.くたてばねによる単振動〉 図のように、なめらかで十分長い直線状の棒 OP を鉛直に立てて 端を水平な床に固定した。 この棒に, 同じ質量mの穴の開いた小さ い物体A,Bを通した。 物体Aには, ばね定数んの軽いばねをつけ, ばねの他端は棒のO端に固定した。ばねは OP 方向のみに伸縮し,棒 と物体A,Bの間に摩擦はないものとする。さらに, 物体Aのばねと は反対側に質量と厚さの無視できる接着剤で物体Bを接着した。 物体 x=0- 物体B 接着剤 物体A A,Bが押しあうときは物体AとBは離れないが,引きあうときは引きあう力の大きさが接 着剤の接着力以上になると物体AとBは離れる。重力加速度の大きさをgとする。 初めに,ばねはその自然の長さからd だけ縮んで, 物体 A, B はつりあいの位置に静止し ていた。図のように,このつりあいの位置を x=0 とし,鉛直上向きを正とするx軸をとる。 (1) 自然の長さからのばねの縮みd を,m, k, g を用いて表せ。 まず, 接着剤の接着力が十分大きく, 物体AとBが離れない場合を考える。 物体Bをつりあ いの位置から6だけ押し下げ, 静かに手をはなすと, 物体AとBは一体のまま上下に振動した。 (2)この振動の周期を,m, k を用いて表せ。 (3)この振動をしているときの物体A, B の速さの最大値を,m, k, bを用いて表せ。 物体AとBが一体のまま運動しているときの両物体の位置の座標をxとする。また,物体 Aが物体Bから受ける力をTとし, x軸の正の向きをTの正の向きとする。 つまり,Tが 正のときは物体AとBは引きあっているが,Tが負のときは押しあっていることになる。 (4)このとき, 物体Bにはたらく力を, m, g, Tを用いて表せ。 x 軸の正の向きを物体Bには たらく力の正の向きとすること。 (5) 物体A, B の運動方程式を考えることで, Tを,m, k, g,x を用いて表せ。 図 (6) Tをxの関数として, -3d≦x≦ とする。 の範囲でグラフに描け。 ただし, ここではb>3d 次に,接着剤の接着力が小さく, 物体 A, B間の引きあう力の大きさが mg 以上になると, 物体AとBは離れる場合を考える。ただし,離れる瞬間の前後で,物体AとBの運動エネル ギーや, ばねの弾性エネルギーは変化しないものとする。 物体Bをつりあいの位置から6だけ押し下げ,静かに手をはなすと, 物体Bは運動の途中 で物体Aから離れた。 (7)運動の途中で物体Bが物体Aから離れるためには,bはある値 6 以上でなければならな い。 bı を,m, k, g を用いて表せ。 (8) 物体Bが物体Aから離れた瞬間の物体Bの速さを,m,k,g. 6 を用いて表せ。

回答募集中 回答数: 0
物理 高校生

どうしてマーカーの式になるのか教えて欲しいです🙇🏻‍♀️ (き)と(く)です。

14 2022年度 物理 立教大理 (2/6) VI.次の文を読み、下記の設問1.2に答えよ。 解答は解答用紙の所定欄にしるせ 電場や磁場の影響を受け, xy 平面上を運動する荷電粒子を考える。 図1のように, y 軸方向正の向きに強さE の一様な電場がかかっているとする。質量m, 電気量g(g > 0) の荷電粒子が時刻 t = 0 に原点から初速度v=v, 0 ) ( 0 ) で運動を開始した。時刻でのこの粒子の位置は である。 (x, y) = ( い ) 立教大理(2/6) max= お ma か 2022年度 物理 15 となる。このことから,この粒子の運動は, by 座標系に対し一定の速度 (きく で運動する観測者から見ると円運動であることがわかる。 この粒子が xy 平面上に描く軌 道をCとする。 また, 質量m 電気量gの荷電粒子が原点Oから初速度 =(0.0)で運動する場合の軌道を C' とする。 このとき、CはAである。 ~くにあてはまる数式をしるせ。 文中の空所 A にあてはまる記述としてもっとも適当なものを、次のaf から 1つ選び、その記号をしるせ。 初に y 軸を通過するときの時刻はt= 図2のように, xy 平面に垂直に, 紙面の裏から表に向かって、磁束密度B の一様な磁 場がかかっているとする。 質量m, 電気量 gg > 0) の荷電粒子が時刻 t = 0 に原点 0から初速度v=v,0) > 0) で運動を開始した。 この粒子が運動開始後に最 1. 文中の空所 う で、そのときの座標は (x,y) = (0, え ) である。 図3のように, y 軸方向正の向きに強さE の一様な電場と, xy 平面に垂直に紙面の裏 から表に向かって、磁束密度 B の一様な磁場の両方がかかっているとする。 質量m,電 気量g(g> 0) の荷電粒子が時刻 t = 0 に原点から初速度 = (0,0)で運動を 開始した。 この粒子のx軸方向, y 軸方向の速度をそれぞれ Ux, Uy, 加速度をそれぞれ Qs, ay とすると,運動方程式は y a.Cと同じ b. Cをx軸に対して反転させたもの C. Cをy軸に対して反転させたもの dCを原点Oを中心として反時計回りに90°回転させたもの e. Cを原点Oを中心として180°回転させたもの 4.Cを原点Oを中心として反時計回りに270°回転させたもの 1. MA や ド 図1 E ひ O 0 B B 図2 図3

回答募集中 回答数: 0
1/31