学年

教科

質問の種類

数学 高校生

線を引いたところの意図がよく理解できません。mのとこがわかってないのですがどういうことか教えていただきたいです🙇

[2]複素数1の12乗根を 20, Z1,Z2,…, z11 とし, Zo=1とする。 Zkk=0,1,2, ....... 11) の偏角を0とし, 0=0<<<<<2πとすると T 0₁ = = Ok オ H である。 オ の解答群 Z₁ = 1 2 Zk=cos 2KTL 12 2kT tisin k 12 π ① ん6 k π 4 k+1 12 k+1 π π 6 k+1 4 2k-1 2k-1 2k-1 π ⑥ 12 一π ⑦ π ⑧ TC 6 4 Zk"=Zzkとなる2以上で最小の自然数をMと表し, kの値によってMの値が どうなるか, 太郎さんと花子さんは考察している。 太郎:20,21,22, ......, Z11 を複素数平面上に図示するとどうなるかな。 花子: 20,21,22, ..., Z11 の絶対値はどれも1だから, 偏角について考える とよさそうだね。 太郎: 点 z12は点z2 と重なるね。 花子: 点 21, 214, ······についても同じように考えると, k=1のときのMの値 がわかるね。 k=1のときM=13であり, k=2のときM= である。 m Z₁ = Z₁ M M=3 となるようなんの値はん=キである。 Z2 =Zk 2x=1 複素数平面上の (M-1) 個の点 Zk, k, なんの値は ZkM M-1 が正方形の頂点となるよう m Z=Z k= ク ケ 3 =Z21d⑤ M-I Z=101 である。ただし、ケとする。 Z2:cosネルtigin/co1g fisin/cosotismQ T=0+2nπL k=6n 10.6 (第3回 25 ) M- (costism) M-I cosmos='ntisinnoyin=cosQ+ismo 1=7 min 共

回答募集中 回答数: 0
数学 高校生

何で反復試行になるのか教えてください!!

指針 注意 解答 北または東へ5区画進むうち, 東入 7! AからBまでのすべての道順は 3!4! × =35通りで,そのうちC地点を通る道順は WAZHOURSE (8) 20 5! 35 すべてが同じ確率で起こるとは限らないので注意が必要である。 例えば, D地点を通 2! 2!3! 1!1! -=20通りであるが, 求める確率は としては誤り。35通りの道順は る道順とE地点を通る道順はともに1通りずつであるが, D地点を通る確率は (1216E地点を通る確率は ( 122-1212である。 8 C地点を通るのは,東へ2区画, 北へ3区画進んだ場合である。 3 よって、求める確率は C (12) (12)=1/圏ハラ 16 のとする。 このとき, 次の確率を求めよ。 (1) 甲がC地点を通る確率 コント 20 製品が大量にあるから、 何個か取り出 1 ✓ * 121 右の図のような碁盤の目の道路 (各碁盤の目の東 西間、南北間の距離はすべて等しい)がある。 甲、 乙2人が, それぞれA地点, B地点を同時に出発し, 甲はBに,乙はAに向かって同じ速さで進むもの とする。 ただし、 2人とも最短距離を選ぶものと し,2通りの選び方のある交差点では,どちらを選ぶかは 1/3の確率であるも GA C B to (2) 甲と乙が CD間ですれちがう確率 造した [1 122 硬 1 の (1) 例題 指針 解答 123

回答募集中 回答数: 0
数学 高校生

112.2 記述これでも大丈夫ですか?

480 00000 基本例題112 互いに素に関する証明問題 (1) (1) nは自然数とする。n+3は6の倍数であり,n+1は8の倍数であるとき, n+9 は 24の倍数であることを証明せよ。 (2) 任意の自然数nに対して,連続する2つの自然数nとn+1は互いに素であ ることを証明せよ。 ATUNATI p.476 基本事項 ② 基本 111 重要 114 CFS CITAT 指針 (1) 次のことを利用して証明する。 a, b, kは整数とするとき a,bは互いに素で, ak が6の倍数であるならば,hは6の倍数である。 TRAXE SHES OU MOC! (2) 1 +1は互いに素⇔nとn+1の最大公約数は nとn+1の最大公約数をg とすると n=ga, n+1=gb (a,b は互いに素) この2つの式からnを消去してg=1 を導き出す。 ポイントは 【CHART A,Bが自然数のとき, AB=1 ならば A=B=1 求める。(間 解答 (1) n+3=6k,n+1=81 (k, lは自然数)と表される。 n+9=(n+3)+6=6k+6=6(+1) n+9=(n+1)+8=81+8=8(1+1)+ M=5A JES RAJS a,bは 11 ak = bl ならばんは6の倍数, 1はαの倍数 互いに素 ②2 aとbの最大公約数は 1 <<549° よって 6(k+1)=8(+1) すなわち 3(k+1)=(2+1) 3と4は互いに素であるから,k+1は4の倍数である。このとき,l+1は3の倍数 したがって,k+1=4m (mは自然数) と表される。 である。 したがって, ゆえに n+9=6(k+1)=6.4m=24m +1=3m と表されるから, したがって, n +9 は 24の倍数である。 n+9=8.3m=24m (2) nとn+1の最大公約数をg とすると n=ga, n+1=gb (a,bは互いに素である自然数 と表される。 n = ga をn+1=gb に代入すると ga+1=gb すなわち g ( 6-α) = 1 g,a,bは自然数で,n<n+1より6-a>0であるから g g=1 (1) としてもよい。 KBT BOE-S) IS = よって, nとn+1の最大公約数は1であるから, nとn+1 (ST 8 は互いに素である。 )=(62. 注意 (2) の内容に関連した内容を,次ページの参考で扱っている。 BOSTOYEVS nは自然数とする。 n +5は7の倍数であり、 Ad>D An=ga, n+1=gb 積が1となる自然数は1だ けである。 08 S (()(A) n+7は5の倍数であるとき、

回答募集中 回答数: 0
1/7