学年

教科

質問の種類

数学 高校生

数学1Aです! (タ)の求め方がわかりません。図の書き方が分からず悩んでいます。特に蛍光ペンのところがわからないです…どなたかよろしくお願いします🙇‍♀️

数学Ⅰ (2)太郎さんの住んでいる街にはK電鉄のA 駅, B 駅, C駅があり, A駅とB駅の 間の線路はまっすぐである。 「STATION A 駅 3駅の位置関係は A駅とB駅の間の直線距離が13km 駅 数学Ⅰ (i) 太郎さんはスマートフォンを持って電車に乗り, A駅からB駅まで移動した。 出発時にアプリに表示されていたのはA駅のみであったが, 出発からちょうど 分後にアプリに ソ ソ の解答群 STATION 10000 +++ B 駅 A駅とB駅の2駅のみが表示された ① A駅とC駅の2駅のみが表示された ② A駅とB駅とC駅の3駅が表示された (i) 1年後にC駅が移転し、 移転後の3駅の位置関係は B駅とC駅の間の直線距離が 5km C駅とA駅の間の直線距離が12km である。 また, 近隣に他の駅はない。 太郎さんのスマートフォンには最寄り駅が表示されるアプリが入っている。 ただ し,最寄り駅とは,スマートフォンからの距離が最も近い駅のことである。 そのア プリでは, 最寄り駅が複数ある場合はすべての駅が同時に表示される仕様になって いる。 以下では,駅および太郎さんがスマートフォンを持って乗っている電車は同じ平 面上の点とみなす。 また, A駅からB駅まで運行する電車はA駅とB駅を結ぶ線分上を動くものと し, その速度は加速・減速を無視し, つねに時速78km であるとする。 A駅とB駅の間の直線距離が13km B駅とC駅の間の直線距離が 5km C駅とA駅の間の直線距離が10km となった。 C駅の移転後に, 太郎さんはスマートフォンを持って電車に乗り, A駅からB 駅まで移動した。 このとき, アプリに複数の駅が最初に表示されるのは,出発か らおよそ タ 後である。 その後、 再び複数の駅が表示されるのは,B駅に到 着するおよそ チ 前である。 タ の解答群 3分46秒 3分56秒 ② 4分6秒 ③ 4分16秒 C駅 12 km 5km チ の解答群 AR 13km B 駅 ⑩ 2分40秒 ① 2分55秒 ②3分10秒 ③3分25秒 (数学Ⅰ第2問は次ページに続く。) 31

回答募集中 回答数: 0
数学 高校生

ベクトルの問題です (2)のOH、BH、AHを図形ではどう表わすのか教えて欲しいです

「基本例題 27 垂心の位置ベクトル 403 0000 平面上に △OAB があり,OA=5,OB=6,AB=7 とする。また,△OAB の垂 6 心をHとする。 (1) cos ∠AOB を求めよ。 (2) OA=d, OB=とするとき,OH をa,” を用いて表せ。 指針 1 p.379 基本事項 重要 29 章 三角形の垂心とは,三角形の各頂点から対辺またはその延長に下ろした垂線の交点で あり △OAB の垂心Hに対して, OA⊥BH, OB⊥AH, AB⊥OH が成り立つ。 そこで, OA⊥BH といった図形の条件をベクトルの条件 に直して解く。 (2)ではOH=sa+tとし, OABH=0, OBAH=0の2つの条件から,s.tの値を求める。 (1)余弦定理から H A B 4 位置ベクトル、ベクトルと図形 52+62-72 12 解答 COS ∠AOB= 2.5.6 60 (2)(1) から ab=abcos ZAOB=5.6.- 1-5 =6 5 △OAB は直角三角形でないから,垂心Hは2点A, B と一致することはない。 Hは垂心であるから OA⊥BH, OB⊥AH OH=sa+to (s, t は実数) とする。 OA⊥BH より OA・BH = 0 である 8日 から よって ゆえに すなわち d•{sa+(t-1)}=0 slaf+(t-1)a=0 25s+6(t-1)=0 25s+6t=6 ...... A a HH 【参考】 |AB=16-G =1612-26-a+la |AB|=7, |a|=5,||=6 であるから 72=62-25 ・a+52 よって a1=6 指針一 ★ の方針。 垂直の条件を (内積)=0 の計算に結び つけて解決する。 B <|a|=5, a1=6 また,OBAH より OB・AH=0であるから {(s-1)a+t6}=0 (s−1)ã•+t|b|²=0 6(s-1)+36t=0 すなわち s+6t=1・ ② よって ゆえに 5 19 ①②から S= t= 24' 144 5 したがって OH=a 24 144 19 a+ -6 ① 垂直→ (内積) = 0 AH=OH-OA <a-b=6, 161=6 ■ ① ② から 24s=5 練習 平面上に △OAB があり, OA=1,0B=2, ∠AOB=45°とする。また,△OAB の 27

回答募集中 回答数: 0
数学 高校生

数IIの三角関数です。 (1)から、途中式なども含めた詳しい解説お願いしたいです… よろしくお願いします🙇🏻‍♀️

0... (*) を考える。 cos >0 を ウ πである。 実戦問題 73 三角関数を含む方程式・不等式 0002を満たす定数とし,xの2次方程式 x2+2(1-cosd)x + 3-sin'0-2sin20-2sin (1) 方程式 (*) が異なる2つの実数解 α, β をもつとき, 0は不等式 2sin20+ ア sine π オ キ 満たす。このことから, 0 の値の範囲を求めると, <B< π. <日< I ク ケ コ さらに6が鋭角のとき, 方程式 (*)のx= sin0 以外の解はx= (2) x=sin が方程式 (*) の解となるような角0は全部でサ 個ある。 [シス + v セ である。 答 (1)xの2次方程式 f(x) = 0 が異なる2つの実数解をもつとき,判別 式をDとすると D> 0 = =(1-cosl)-(3-sin'0-2sin20-2sin0) =2sin20+2sin-2cos0+ (sin'0+cos20)-2 = 2sin20+ 2sin0-2cos0-1 =4sincos0+ 2sin02cos0-1= (2sin0-1) (2cos+1) (2sin-1)(2cos8+1)>0 0≦02πの範囲に注意して (i) sind> かつ cost-1/2 のとき 2 Key 1 sin0 > 12 より cose > 1/23より 0≤0<,<<2 よって,この共通部分は << (ii) sine< 12 1 かつ cose<! のとき 2 Key sin<1 058< >*<0<2x π 5 6'6 2 cos<- より <日< π 2 4 3 118 sin20=2sin Acoso AB> 0⇔ A>O {A<0 または [B>0 \B<0 1 sin0 > cos>- <2π sin< よって、この共通部分は8/1/20 (i), (ii) より << 6 2 3 5 π、 << 6 (2) x = sinが方程式 (*) の解であるとき sin20+2(1-cos) sin0+3-sin20-2sin20-2sinQ= 0 整理すると, 3(sin20-1)=0より sin20=1 12 1-2 y cose<- 1x 0 x 20 の値のとり得る範囲に注意 0204πの範囲で 20= 5 π 2' 2 よって、条件を満たす 0 は 0 = π 5 4'4 する。 の2個。 方程式 (*) は さらにが鋭角のとき,=1/4であるから 4 x²+(2-√/2)x+1/2(1-2√2) = 0 左辺を因数分解して = 0 方程式(*)はx=sin = 1/12 T 1 π 1 -4+/2 よって, x= sin- 以外の解はx= -2= √√2 √2 2 を解にもつことがわかってい あるから,因数分解する。 攻略のカギ! Key 1 三角関数を含む方程式・不等式は, 単位円を利用せよ

回答募集中 回答数: 0
1/60