学年

教科

質問の種類

数学 高校生

N(p,n分のpq)とN(m,n分のσ二乗)って一緒なんですか?なんで違う式になってるかわからないです あとそもそも母比率と標本比率の関係がわかりません 教えてください

5 B 標本平均の分布と正規分布 ある工場で製造された製品について 不良品の割合を調べる場合のよ うに,母集団の各要素が,ある特性 A をもつかどうかを調査の対象と することがある。このとき,母集団全体の中で特性 A をもつ要素の割 合を,特性 A の 母比率という。これに対して,標本の中で特性 A を もつ要素の割合を,特性 A の標本比率という。 特性 A の母比率がpである十分大きな母集団から,大きさがnの標 本を無作為に抽出するとき 標本の中で特性 A をもつものの個数をT とすると,Tは二項分布B(n, p)に従う。 標本 則が成り立 標本平場 母平均 5 出する Nm 母集 分布 N 15 10 よって,g=1-p とすると, 86ページで学んだことから,nが大き いとき,Tは近似的に正規分布N(np, npg) に従う。 特性 A の標本比率を R とすると,R=- Tである。Rは標本平均 X 例題 10 n 9 と同様に確率変数で PAR E(R)=E(T)=1+np=p V(R)-112V(T)=1212.npa pq •npg= n ☆正規分布) したがって,標本比率 R は近似的に正規分布 Np, pq に従う。 n (6) 15 標本比率 R は,次のように考えると, 標本平均 X の特別な場合になる。 特性 A の母比率がである母集団において, 特性A をもつ要素を1, もたない要素を0 で表す変量 x を考えると,大きさんの標本の各要素 20 を表すxの値X1,X2, ......, Xn は, それぞれ1または 0 である。 特性 A の標本比率R は, これらのうち値が1であるものの割合であ るから h大きいとき X1+X2+......+Xn R= hXIII N (p, PHP), Ri n N(ゆ)に従う 20 4

回答募集中 回答数: 0
数学 高校生

この問題では立体Aの形が分からないと解けない問題で合ってますか?このような問題では立体の形は分からなくていいと思っていたので分からなくなってしまいました。回答よろしくお願いします。

388 (2) 切り口を考えたいが, 立体Bはイメージしにくいから 立体Aを「z軸のまわりに回転させる」→それを「平面 z=tで切る」 見方を変える 例題 21. xyz 空間において,D={(x, y, z1≦x≦2,1≦y ≦ 2, z = 0 } で表 された図形をx軸のまわりに1回転させてできる立体をAとする。 (1) 立体 A の体積VA を求めよ。 (2) 立体Aを軸のまわりに1回転させてできる立体Bの体積VB を求 めよ。 (名古屋大 改) ReAction 回転体の体積は、回転軸に垂直な切り口の円を考えよ 例題199 切り口の図形Eは図1の長方形 PQRS となる。 平面 z = t と軸の交点をH, 線分PSの中点をM とすると ゆえに PH = √PM2+MH=√8-1 S(t) = PH-π・12 =(√8-12)² -=(7-12) S 1 点Hから最も遠い点は P, 点Hから最も近い点 はNであるから S(t) = (半径PH の円) (半径NHの円) PM=√22-2 特講 (1) t1のとき 図1' 平面 z=t における図 図2′ 平面 x=2 における図 Q P 12 St P R S' +M z=tr イメージしにくい。 M HN x R -21- 0 立体A を「平面 z = t で切る」→それを「2軸のまわりに回転させる」 AP H 12y P.S. -1 イメージしやすい。 場合に分ける 21 HACS (2 (ア)断面が長方形1個 (イ) 断面が長方形 2個 切り口の図形Eは図1' の tの値によって, z=t 2つの合同な長方形 PQRS, 断面の形が異なる。 H• P'Q'R'S′ となる。 N H x 線分 PP′, QQ' の中点を M, Q' RR 0 0 z=to N とすると -2-1 図3′ 平面 x=1 における図点Hから最も遠い点は 0 12 y P. 点Hから最も近い点 はRであるから S(t) (半径PH の円) (半径RHの円) y 22120) 03-12-09 PHPM² + MH² PM=√22-12 √√8-12 02 4章14 体積・長さ,微分方程式 Action» 切る平面によって断面の形が変わるときは,図を分けて考えよ - RH = √ (1) 立体 A は,底面の半径が2で高 さ1の直円柱から, 底面の半径が 1で高さが1の直円柱をくり抜い た立体である。 y y D 2 2 1 1 02 よって, その体積は O 0 1 2 VA=2°z.1-12.1 = 3π √RN²+NH² √2-12 RN=√1-2 ゆえに (2) 立体Aを軸に垂直な平面 z=tで切ったときの, 切り口の図形をEとし,図形Eをz軸のまわりに1回 転させてできる図形の面積を S(t) とする。 立体Bはxy 平面に関し 対称である。 no (ア)1st ≦ 2 図1 平面 z=t における図 図2 平面 x=2における図 2 H・ P S IM P St z=t, 2 t 2 0 HN M x -2-1 0 1 12y S 2 S(t)=PH-RH 2 = (√8–1²)² -π(√2–1²)² = 6 (ア)(イ)より、求める立体Bの体積は VB =S(t)dt = 2*S(t)dt -26x dt + (7-- =2 =2 S 66 立体Bはxy 平面に関し て対称である。 64 3 212 空間内の平面 x = 0, x=1, y=0, y=1, z=0, z=1 によって囲まれた 立方体をP とおく。Pをx軸のまわりに1回転させてできる立体を Px, P 軸のまわりに1回転させてできる立体をP,とし,さらにPx と Pyの少 なくとも一方に属する点全体でできる立体をQとする。 Jano1 (1)Qと平面 z=t が交わっているとする。 このときPx を平面 z=t で切っ たときの切り口を Rx とし,Py を平面 z = t で切ったときの切り口を R, とする。Rx の面積,Ry の面積, R. と Ryの共通部分の面積をそれぞれ求 めよ。 さらに, Q を平面 z = tで切ったときの切り口の面積S(t) を求めよ。 (2)の体積を求めよ。 (富山大) 38 p.403 問題212

解決済み 回答数: 1
1/141