学年

教科

質問の種類

数学 高校生

92. 答えは合っているのですが、(文字を具体的な数字に書き換えて解き方を考えたので)うまく記述文は書けませんでした。仮にこれが記述問題だとしたら何割くらいの得点になりますか??

R 1 減少 重要 例題 92 既約分数の和 00000 pは素数m,nは正の整数でm<nとする。mとnの間にあって, pを分母と する既約分数の総和を求めよ。 $1=1 61=-5 7+58r 指針▷既約分数の和→全体の和から整数の和を除くという方針で求める。 まず,具体的な値で考えてみよう。 例えば,2と5の間にあって3を分母とする分数は 11 8 9 10 7 3'3' 3'3' (*) 解答 であり、既約分数の和は(*)の和から3と4を引くことで求められる。 このことを一般化すればよい。 gを自然数として, m<g p ① のうち、 - pn-pm-1 2 9 12 13 3, 3 pm<g<pnであるから g=pm+1,pm+2, よって 9_pm+1 pm+2 Þ þ P これらの和をS とすると これらの和を S2 とすると S2= が整数となるもの _=m+1,m+2, -< n を満たす 14 3' 3 n-m-1 2 -(m+n) S= (+ 24288 Les ass (n-1)-(m+1)+1 2 159), arc -(m+n) p S=(pn-1)-(pm+1)+1(om+1.pn-1)S=1/2"(a+1) SODUL P ...... pn-1 n-1 を求める ………, pn-1 -{(m+1)+(n-1)} 【同志社大] 1/2 (m+n){(n−m)p−(n−m)} 1/12(m+n)(n-m)(b-1) ゆえに 求める総和をSとすると, S=S-S2 であるから pn-pm-¹ (m+n)_n_m−¹(m+n) 2 2 (*)は等差数列であり、3と4は 2と5の間にある整数である。 「とんの間」であるから, 両端のとnは含まない。 < 初項 基本 89,90 pm+1 か 公差 1 等差数列。 GROER) 45.= n(a+1) mとnの間にある整数。 (全体の和) (整数の和) 523 3章 12 等差数列 委 Ja に

回答募集中 回答数: 0
数学 高校生

⑵の解説がよく分かりません。図で説明して欲しいです🙇

1)で AC を トル 直線上にあ と表せる。 6-a 化する 1 まで変 点Pは点 の向き で動く. M (mm) 例題1.34 直線のベクトル方程式 (2) (1) 点A(4,1)を通り,n=(-3,5) に垂直な直線の方程式を求めよ. (2) A(5,4) から直線l: 2x+3y-6=0 に垂線を引き, lとの交点 をHとする. 点Hの座標を求めよ. 考え方 (1) 直線上の点をP(x, y) とすると, 解答 合 Focus (2) 法線ベクトルnを求めて, 考える。 ax+by+c=0 NAP または AP=0 つまり、AP= 0 (16) n=(a,b) (1) 求める直線上の点をP(x,y) とすると, AP=(x-4,y-1) NAP または AP=0 より, n AP=0 したがって, (249) 3ベクトルと図形 つまり, ・AP=-3(x-4)+5(y-1) = 0 LA <法線ベクトル> 直線lに垂直なベクトルを, lの法線ベクトルという. |法線ベクトルは無数にある. **** よって, 3x-5y-7=0 2000円 (2)=(2,3) は直線ℓの法線ベクトルの1つであるから, m//AH よって, AH=km (k は実数) とおける. 点の座標を(p,q) とすると, AH=(p-5, g-4) より (p-5, q-4) k(2, 3) A p=2k +5......①,g=3k +4....② 点H は l上の点だから, 2p+3g-60 [V 3* ① ② を代入して, 2(2k +5)+3(3k+4)−6=0 Sel 16 よって, k=- 13 n -=0²202/33 33 4 これを①,②に代入すると,p=- 9=1/3 + q= より、 H 13 (1) b=0:y=-x-1013 - D. First C 傾きは- したがって、n=a-a=0 より, din 13' 13 e C1-63 法線ベクトル nonを用いた直線のベクトル方程式は、 n·AP=0 注》次の(I)(Ⅱ)より, ベクトル n= (a, b) が直線ax+by + c = 0 と垂直であることが わかる.ただし,n=① とする. 方向ベクトルはd=(1) 第3章 x=- C a (Ⅱ) b=0:ax+c=0 より 方向ベクトルはd=(0, 1) また,n=(a,0) したがって d.n=0+0=0 より Kodin 2020 練習 (1) 点A(35) を通り(11) に垂直な直線の方程式を求めよ. C1.34 (2) 点A(-1, 3) から直線ℓ: 2x-y-3=0 に垂線を引き, lとの交点をH ** とする. 点Hの座標を求めよ. ➡p.C1-81 26 (2) やってない

回答募集中 回答数: 0
数学 高校生

マーカーを引いた部分が理解出来ません 教えてください🙏

436 数列の和と期待値・分散 重要 例題 55 Nを自然数とする。 大きさが同じ (N+1) 個の球に, 0 からNまでの異なっ た数字をそれぞれ1つずつ書き, 袋に入れておく。 その中から2球同時に り出し、そこに書かれた数字の差を確率変数X とする試行を考える。このと き 次のものを求めよ。 (1) kを1≦k≦N なる自然数とするとき, X = k となる確率 P (X = k) (3) N=4 のとき, Xの分散 V (X) (2) Xの平均E(X) CHART & SOLUTION k, k, k の公式(第1章数列参照) を利用する。 計算の際, N はkに無関係であるから, ZNk=Nk などと変形する。 (1)X=kとなるのは, 2球に書かれた数の組が (0, k), (1,k+1), ……, (N-k,N) の場合である。 よって (2) Xがとりうる値は X=1, 2, 3, ....., N E(X)=Σ{kP(X=k)}=Σ- P(X=k)=N-k+1_2(N-k+1) N+1 C2 よって - k=1 N - Z Ž _N+2 = 3 k=1 P RACTICE 55 y 2{(N+1)k-k2} N (N+1) = N Σk² 2 N(N+1) k 2 2 17/11/N(N+1) - NON+1) 11 -N 2 6 11 ● 26 =15-10=5 N (N+1) k=1 (3) N=4のとき P(X=k)=1/12-10k,E(X)=2 4 ゆえに E(X²¹) = {k²P(X = k)} = (¹/k². 1 -k2. -k3 10 k=1 k=1 N であるから ・4・5・9- |_N(N+1)(2N+1) 10 (12/3・4・5) 2 V(X)=E(X2)-{E(X)}=5-22=1 AS 球の取り出し方は全部 で+1C2 通り。 んに関係しない式を の外に出す。 n k= n(n+1) k=1 Ex 44 A n Σk²³= = n(n+1/2+1) k=1 k=1 +2²=fain+

回答募集中 回答数: 0
1/22