数学
高校生

マーカーを引いた部分が理解出来ません
教えてください🙏

436 数列の和と期待値・分散 重要 例題 55 Nを自然数とする。 大きさが同じ (N+1) 個の球に, 0 からNまでの異なっ た数字をそれぞれ1つずつ書き, 袋に入れておく。 その中から2球同時に り出し、そこに書かれた数字の差を確率変数X とする試行を考える。このと き 次のものを求めよ。 (1) kを1≦k≦N なる自然数とするとき, X = k となる確率 P (X = k) (3) N=4 のとき, Xの分散 V (X) (2) Xの平均E(X) CHART & SOLUTION k, k, k の公式(第1章数列参照) を利用する。 計算の際, N はkに無関係であるから, ZNk=Nk などと変形する。 (1)X=kとなるのは, 2球に書かれた数の組が (0, k), (1,k+1), ……, (N-k,N) の場合である。 よって (2) Xがとりうる値は X=1, 2, 3, ....., N E(X)=Σ{kP(X=k)}=Σ- P(X=k)=N-k+1_2(N-k+1) N+1 C2 よって - k=1 N - Z Ž _N+2 = 3 k=1 P RACTICE 55 y 2{(N+1)k-k2} N (N+1) = N Σk² 2 N(N+1) k 2 2 17/11/N(N+1) - NON+1) 11 -N 2 6 11 ● 26 =15-10=5 N (N+1) k=1 (3) N=4のとき P(X=k)=1/12-10k,E(X)=2 4 ゆえに E(X²¹) = {k²P(X = k)} = (¹/k². 1 -k2. -k3 10 k=1 k=1 N であるから ・4・5・9- |_N(N+1)(2N+1) 10 (12/3・4・5) 2 V(X)=E(X2)-{E(X)}=5-22=1 AS 球の取り出し方は全部 で+1C2 通り。 んに関係しない式を の外に出す。 n k= n(n+1) k=1 Ex 44 A n Σk²³= = n(n+1/2+1) k=1 k=1 +2²=fain+

回答

まだ回答がありません。

疑問は解決しましたか?