学年

教科

質問の種類

数学 高校生

指数関数に関しての質問です。考え方のところに任意の底で両辺の対数をとるとありますが、(1)では底5と底2で対数を取り、(2)では底10で対数をとっています。この任意の底が何なのか求める方法はありますか?

326 第5章 指数関数と対数関数 Think ***** 例題 163 対数の計算 (3) (1) α=5logz3+1 のとき, 40gza の値を求めよ.agolo ( 上智大) 1 1 1 (2) 2'3'5'30 のとき, + の値を求めよ of (成城大) 1 2 x y (log103+log1010) (2) 2'30 について, 底10で両辺の対数をとると log102=10g10/30 x log102= log(3-10). まずxの値を求める. dec mulo 2 対数と対数関数 327 x=- 5 (3) X=logis150,Y=2 logs/0/+1/2 3 3 8 +1/10g2g とする. log102 _log103+1 31ogi2 1 このとき, 10g23=a, log25=bとして, X, Y を a, b の式で表せ したがって 3log102 x log103+1 (名城大) 11 の逆数 同様に (2) 2'3/30について, 任意の底で両辺の対数をとって 任意の底で両辺の対数をとゑ 考え方 (1) の値はXとおいて、任意 別解では αlog MM を利用. (p.328 Column 参照) 3log105 log.30 log 2=log. 30-xlog.2=- 2=1/10g30 x= log.2 変形する. 解答 (1) 5logs3 X とおいて,底5で両辺の対数をとると, log55log 310g5 X -DE log2 3 logs5=logs X log2 3=10gsX log53 -=logsX logs25 /log:3=log:X まず5l0gs3 の値を求 める. loga M'=rlog.M logs5=1とな 底を5にそろえる。 |logs25=logs5°=2 (3) X = log15150 log2 150_log2(3・52・2) logz3+2log5+log: 2 5 y 1 よって, x y Z _310g 103+login10) log103+1 3(log103+1) log103+1 =3 log215 a+2b+1 log2(35) log23+log25 a+b y z も求めると 3log103 1 log103+1'z log103+1 1_1_3(login2+10g103+10g105) logo3+1 7h3J5 30 が共通なので、 分母が等しくなる. logio 2+logi05 |=log101 |log:3a, log25=b なので、底を2にそ 第5章 ろえる. logs3=logsX したがって,X=3=3 なので、 α=5log 3+1=√3 +1 log,O=log.A is pol+6.gol⇔O=△ 次に, 40ga=Yとおいて,底2で両辺の対数をとる 4logza を簡単にする。 と、 Dol+vol log24l0gzalog2Y log2a log24=log2Y 2log2a=log2Y 4585 000 log4=log,2 log2a2=log2Y よって,Y=α より, 4log:a=α²= (√3+1)^2=4+2/3 (別解) 10g3= log$3 1 log:25-2logs3=logs√3 =2 したがって, α=5logs√3+1=√3+1 go ww よって, m 4log:a22logza=2log = o² =√3+1)^2=4+2/3 wwwww 2logia=α² Focus Y=3³log2+ log2 3 88 28 (log23-10g22°)+20 (log25-10g2) =(a-3)+(6-3) =a+3b-3 logoc a この値は, alogic=Xとおき, 両辺の対数をとる 対数の定義 alog MM (a>0, a≠1,M> 0) 練習 1 3log25 [163] (1) この値を求めよ. /2 *** ( 青山学院大 ) (2) a,b,c を正の数とすると11+2a.b.c xyz (福岡大) (3)a=log3.blog5 とするとき 10g30 を a b を用いて表せまた, 21+0 および、底が2の対数を用いて表せ の値を求めよ. (大阪工業大) ➡p.34712

解決済み 回答数: 1
数学 高校生

答え合わせお願いします🙇‍♀️🙏💦

Ⅱ. 次の英文の空欄 ( 11 ) から ( 20 )に入る最も適切な英単語を, a. ~d.の中から 1つ選びなさい。 解答は解答用紙1枚目 (マークシート方式)の所定の解答欄にマークし なさい。 2893 000 Lego bricks. (Image source: Wikimedia Commons-CC license) Car made from Lego bricks. Lego has unveiled its first bricks made from recycled plastic bottles and ( 11 ) that it hopes to include the pieces in sets within two years. The prototype 4x2 bricks have been made from PET plastic from ( 12 ) bottles with additives to give them the strength of standard Lego parts, and are the result of three years of ( 13 ) with 250 variations of materials. It has already ( 14 ) plans to remove single-use plastic from boxes, and since 2018 has been ( 15 ) parts from bio-polyethylene (bio-PE), made from sustainably sourced sugarcane. These parts are bendy pieces, such as trees, leaves and accessories for figurines. Tim Brooks, vice-president for environmental ( 16 ) at Lego Group, said the biggest challenge was "rethinking and innovating new materials that are as ( 17 ), strong and high (18) as our existing bricks and fit with Lego elements made over the past 60 years". He added: "We're committed to playing our part in building a sustainable future for generations of children. We want our products to have a positive ( 19 ) on the planet, not just with the play they inspire, but also with the materials we use. We still have a long 20 ) we are making." way to go on our journey, but are pleased with the Hillary Osborne, "Lego develops first bricks made from recycled plastic bottles", The Guardian, 23 June, 2021. (https://www.theguardian.com/lifeandstyle/2021/jun/23/lego- develops-first-bricks-made-of-recycled-plastic-bottles) (-)

解決済み 回答数: 1
数学 高校生

172.3 これでも大丈夫ですか??

さい。 去。 ろえ -) g53 基本例題112 対数の表現 (1) 10g23=a, log35=6のとき, log210と1015 40 を a b で表せ。 1 logx b= log.xc= のとき, 10gabcxの値を求めよ。 8' 24 ga=1 (2) 10gxa= 1 3' (3) a,b,c を1でない正の数とし, 10gab=a, log.c=β, logca=y とする。 1 1 このとき, ab+By+ya=-+ + が成り立つことを証明せよ。 a B 指針 (1) 10,15, 40 をそれぞれ 分解して, 2, 3,5の積で表すことを考える。 (2) 10gabcx= logx abc (3) 右辺を通分すると, 分母に aβy が現れる。 これを計算してみる。 363510 1 また 解答 The Parent (1) log2 10=log2 (2-5) = log₂2+log25=1+log25 ここで よって log2 10 log₂ (2.5)=1+log₂5 底の変換公式を利用して, 10g25 をa, b で表す。 また 10g 15 40 は, 真数 40=5・2° に着目して,2を底とする対数で表す。 である。 10gxabcの値を求める。 1 log35 log32 log210=1+ab |_log25= log1540= == + 1/3 + a = r -= log₂3.log35=ab RETS S00 log2 40 log215 (2) ab+3 ab+3 a+ab a(b+1) = (2) logxabc=logxa+logxb+logxc= よって logabc X= 1 aβ+βy+ya...... ① aby log2 (5.2³) log2 (3.5) 1 logxabc a log25+3 Puiglog23+10g25 =2 aby=loga blogb clogca=logab. 1+1+1/0 であるから、①より したがって,等式は証明された。 1 1 1 + + 3 11 24 8 10gac.. loga blogac 1 2 cal =1 00000 [名城大] =aβ+βy+ya が成り立つ。 aduto 1 log32= log23 前ページ検討も参照。 ( 10g25 = ab (前半から) log■ [久留米大] (3) 別解 基本171 したがって (左辺) log 1 aβ=logablog.c=logac 同様に βy=10gba Ya=logcb =logac+loga+logcb 1 1 + + Y a B 練習 (1) 10g2=a, logs4=6とするとき, log158 をa, bを用いて表せ。 ③172 でない正の数とし, A=logza, Blog2 bとする。 a, bが 2=-1、ab=1を満たすとき, A, B の値を求めよ。 芝浦工大 (2)類 京都産大] (p.272 EX110 269 5章 30 対数とその性質

解決済み 回答数: 1