学年

教科

質問の種類

数学 高校生

囲ってある部分についてです。 なぜ(−1)n乗じゃないんですか?n−1乗になる理由を教えてください!

742/21☆ 基本 例題 42 2つの無限等比級数の和 (2-2)+(+2)+(3-2)+ 21/20よ 次の無限級数の収束, 発散を調べ, 収束すればその和を求めよ。出会 00000 +......+ ++(2)+ ...... P.64 基本事項目,基本 |指針 無限級数 まず部分和 ( )内を1つの項として, 部分和 S を求める IN ROO ぞれ求めよ。 (複数 D 43 ここで,部分和 S, は 有限であるから,項の順序を変えて和を求めてよい。 注意 無限の場合は、無条件で項の順序を変えてはいけない(次ページ参照)。 別解 無限級数 ∑an, Σbn がともに収束するとき, k, lを定数として 00 n=1 n=1 n=1 00 00 (kan+1b.)=kan+12bm が成り立つことを利用(p.64 基本事項)。 n=1 n=1 3人が1枚目、2枚 初項から第n項までの部分和を Sn とすると Sn=12+ 解答 S,= (2+//+//+..+)-1/2-12/3+/2/2 +・・・+ (-1)n-1 2n LIDE 1- 3 1-(-1/2) =3 の一部の金額を金者の よって |= lim Sn = 3.1-1.1=3 8 企業の貸し出しに 金を 3払いに当て、拡 ゆえに、この無限級数は収束して、その和は 8 別解(与式)=2371+ n=13" n-1 83 (-1)=1/2(1/2)^2+(-1/2)"} 22 ( 13 ) は初項 2.公比 1/3 の無限等比級数ne て 2(-1/2)は初項 - 121,公比-12 の無限等比級数 a Sは有限個の項の和な ので,左のように順序を 変えて計算してよい 。 初項α,公比rの等比数 列の初項から第n項ま での和は,r=1のとき a(1-r") 1-r で,公比の絶対値が1より小さいからこの無限等比級 無限等比級数 Mar 数はともに収束する。 ゆえに、与えられた無限級数は収束して, その和は その和は \n-1 1000 00-900 (7=1 2 === + は、 1- 3 として新たにお金を n n=1 の収束条件は a=0または|r|<1 ◆収束を確認してから 8 を分ける。 3 無限級数の収束, 発散を調べ, 収束すればその和を求めよ。 p.81 EX

解決済み 回答数: 1
数学 高校生

1ページ目の(2)が、なぜ2ページ目の(3)のようにならないのでしょうか、区別の仕方が分からないです。教えてください。

mentos] 190 基本 111 2次不等式の解法 (2) 次の2次不等式を解け。 (1)+2x+1>0 (3) 4x24x+1 (2) -4x+5>0 (4)~3x²+85-6>0 の不等式を ( [指針 平方完成した式から判断できる。 前ページの例題と同様、2次関数のグラブを いて、不等式のを求める。グラフととの共 点の有無は、不等号を番号におき換えた2次方 程式 ax+bx+c=0の の、または く '+2x+1=(x+1) であるから. 解答 不等式は よって、 は (x+1)0 1以外のすべての実数 (2)x4x+5=(x-2)+1であるから, 不等式は (x-2) +10 よって、解はすべての実数 (3) 不等式から 4x³-4x+150 4x4x+1=(2x-1)であるから, 不等式は (2x-11 50 1 よって、 解はx= 2 (4) 不等式の両辺に-1を掛けて 3.x²-8x+6<0 2次方程式 38x+6=0の判別式を D <KKK ADの場合、 基本形に 4x<-1-1 てもよい。 ADDの場合 基本形に、 関数コースー は、すべての y>0 して のとき 1のとき 721 (1) C Dとすると 22-4-3・6=-2 の係数は正で、かつであるから,すべてから、 xに対して3x²-2x+6> 0 が成り立つ。 よって、与えられた不等式の解はない 不等式の両辺に1を掛けて 3x-8x+6<0 x+6=3x1+1/3であるから、 x8+60を満たす実数は存在しない。 よって、与えられた不等式のはない +6 へのグラフと 住むグラフが下に あることから、すべ にして 次の2次不等式を解け。 111 (J)+x+420 (3) -4x+12-920 (2) 2x+4x+3<0

回答募集中 回答数: 0
数学 高校生

ユークリッドの互助法の式まではわかりますが、 代入して行くところからがよくわかりません わかる方テスト間際なので教えてください😢 よろしくお願いします!!

例題 311 不定方程式 〔8〕... 2元1次 (互除法の利用) 方程式 67x+107y=3 を満たす整数の組(x, y) をすべて求めよ。 思考のプロセス Wo Action 1次不定方程式は、 まず 1組の解を見つけよ しかし、 係数 67, 107 が大きく, 1組の解を見つけにくい。 Action» 1 次不定方程式の1組の解は,互除法を利用して求めよ 段階的に考える x,yの係数 67107 で互除法 107 = 67×1 + 40 67 = 40×1+27 40= 27×1+ 13 27 = 13×2+1 301 解 方程式 67x+107y = 3 例題 107 = 67×1 +40 より 67 = 40 × 1 +27 より 40 = 27 × 1 + 13 より 27 = 13×2+1 より ⑤ に ④ を代入すると これに ③ を代入して この両辺に3を掛けて 「余り」を残して ( 余り 107-67×1=40 67-40×1= 27 40-27×1=13 27-13×2=1 ① - ⑥ より 移項 67 + 107・ ⑦ に代入すると よって、求める整数の組は x=107n+24 y=-67n-15 67 × 24 + 107 × (−15) = 3 A B ... D 40-27×1=13 27-13×2=1 y=-67n-15 (最後⑩から始めて 「余り」を次々に代入) 27-13×2=1 40-27 ×1= |= 1 が得られる。 与式の右辺は3だが,どうすればよいか? (nは整数) D ・① の係数 67 と 107 について 107-67×1= 40 67-40×1= 27 (5) 27- (40-27 ×1) x2 = 1 てこの27 × 3+ 40 × (−2) = 1 ( 67-40×1) × 3+ 40 × (−2)=1 67 × 3 +40 × (−5)=1 さらに②を代入して 67×3+ (107-67×1) × (−5)=1 67 × 8 + 107 × (−5) =1 C ... B A ..6 67(x-24) +107(y + 15) = 0 67(x-24)=-107(y+15) 67 と 107 は互いに素であるから,x-24は107の倍数となる。 よって,x-24 = 107 (nは整数)とおくと x = 107n+24 67-40×1= 107-67×1 40 代入して数 (3) 例題 309 ユークリッドの互除法を 用いる。 ④ を代入して27と 整理する。 ③ を代入して 67 整理する Go Ahe 元1次 すなわち ( ② を代入して67 整理する 与式の右辺とそろえる。 (x, y) = (24, -15) 1組の解である。以下は 例題 309 の方法と同じ。 このこ まず最 (定) a $ それ NEE [

解決済み 回答数: 1
1/7