学年

教科

質問の種類

数学 高校生

(ア)の問題文を読んで書いた図が3枚目です。 なんで解答と違うんでしょう… また、cosは1が最大だからという3枚目の解き方のどこが違うのか教えてください🙇‍♀️ ちなみに(イ)は3枚目みたいな私の解き方で 図も答えもあっていました!

9 三角関数/合成 f(0) =2cos0-3sin (0≦≦T) の最大値は であり,最小値は (イ) f(0)=3sin20-2sincos+cos20 (0/2)は0で最大値 0で最小値をとる. COS で合成 acos+bsin••••••ア を cos で合成してみよう. P(a, b) とし, OP がx軸の正方向となす角 (左回りを正とする)をαとお くアをOP の長さ2+62 でくくることで,次のように変形できる. である. (日大文理・理系) YA P(a,b) b をとり, (星薬大) a b acos+bsin0=√a2+62 cos +sin 0. √√√a²+b² √a²+b² shQ =√2+62 (cosocosa+sinUsinα)=√a2+62cos(O-α) sin で合成 asin+bcoso (ア と cos, sin が入れ替わっていることに注 意)を,図のα を用いて sin で合成すると,次のようになる. a b asin+bcos0=√a2+62 sin 0. +cos ・ √2+62 ✓a2+62 =√a2+b2sin (0+α) a a 0 I a cosa= √a2+62 b sin a= Va²+62 =√a2+62 (sincosa + cossina) どちらで合成するか 最大・最小を求める問題で, 変域に制限があるとき,上のαが有名角でなけ れば, sin よりも cos で合成した方がどこで最大・最小になるかが分かり易いだろう. 1-cos2r sin x, COSの2次式 sin2x x= 2 cos2r= 1+cos2r 2 sin 2.x sinrcosr= を用いて, 2

解決済み 回答数: 1
数学 高校生

三角関数 解説の下から3行目、tan2θ=〜の式変形が分かりません 教えてください! 青チャート 数ⅱ 例題168

重要 例題 168 図形への応用 (2) 000 点Pは円x+y2=4上の第1象限を動く点であり,点Qは円x+y=16 上の第 る。また、点Pからx軸に垂線PHを下ろし, 点Qからx軸に垂線QK を下ろ 象を動く点である。 ただし, 原点0に対して,常に ∠POQ=90° であるとす す。更に∠POH = 0 とする。 このとき, △QKHの面積Sはtanのと 指針 最大値をとる。 [類 早稲田大 ] 重要 165 △QKH の面積を求めるには, 辺KH QK の長さがわかればよい。 そのためには,点 Pと点Qの座標を式に表すことがポイント。 半径rの円x+y=y2上の点A(x, y) は,x=rcosa, y=rsina (a は動径 OA の 表す角)とおけることと,∠POQ=90°より,∠QOH=∠POH+90°であることに着目。 10P=2, ∠POH=0であるから, Pの座標は (2 cos 0, 2 sinė) 0Q=4,∠QOH=0+90° であるから,Qの座標は (4cos(+90°), 4sin (0+90°)) すなわち (4sin 0, 4cos0 ) ただし 0°<0 <90° ゆえに 512KHQK=1/2(2cos0+4sind).Acos0 =2(2cos20+4sin Acos 0 ) YA 4 2 P -4 K 0 H2 x =2(1+cos20+2sin20)=2{v5sin(20+α) +1}| 三角関数の合成。 ただし, は sina= 1 2 COS α= √5 √5 E 0° <α <90° を満 αは具体的な角として表 すことはできない。 またす。 0°<<90°から (0°<) α <20+α<180°+α (<270°) よって,Sは20+α=90°のとき最大値(5+1)をとる。 20+α=90°のとき tan20=tan(90°-α)= 1 COS a sinq= COS α = =2 tan a sin a ゆえに 2 tan 1-tan20 =2 よって tan20+tan0-1=0 tanについての2次方 程式とみてく。 <<90° より tan 0 0 であるから tan0= 1+√5 2

解決済み 回答数: 1
1/6