学年

教科

質問の種類

数学 高校生

2(1-logx)/x^2=0のxの値の求め方について詳しく知りたいです。 どなたかお願いします🙇 2枚目の考え方であっていますか?

244 関数のグラフの概形 (1) 発展例題163001 基礎例題 150 関数 y = (logx ) 2 の増減, 極値,グラフの凹凸, 変曲点, 漸近線を調べて) グラフの概形をかけ。 CHARI & GUIDE ① 定義域 x, yの変域に注意して, グラフの存在範囲を調べる。 ② 対称性 x 軸対称, y 軸対称, 原点対称などの対称性を調べる。 ③ 増減と値 y'の符号の変化を調べる。 ④ 凹凸と変曲点y" の符号の変化を調べる。 ■解答 関数の定義域は, 10gxの真数条件から 210gx ⑤ 座標軸との共有点 x=0のときのyの値, y=0 のときのxの値を求める。 ⑥ 漸近線x→±∞ のときのりやり→±∞となるxを調べる。 PRO y'=2(logx) (logx)'=- y' xC 20 J² y y"=- y'=0 とするとx=1, yの増減やグラフの凹凸は、次の表のようになる。 75004 1 0 関数のグラフの概形 次の1~6⑥ に注意してかく (2logx)'.x-(2log x)(x)' _ 2(1-logx) x² 1 + 0+fx + : + + e+ y'=0 とするとx=e7 0 極小 変曲点 0 1 lim y=lim (log x)² = ∞ x→+0 x=1で極小値0をとる。 変曲点は,点(e, 1) である。 また, lim logx=-∞ であるから x→+0 x>0< | +- よって, 軸が漸近線である。 以上から, グラフは 〔図] SA ↑ 1 0 1 e (10gx) ≧0であるから、 グラフは y≧0の範囲に 存在する。 150 ズーム UP ←logx=1 から x=e 注意 増減表でよく用いら れる記法 x は下に凸で増加, は下に凸で減少、 は上に凸で増加 は上に凸で減少 を表す。 ま 関 左

回答募集中 回答数: 0
数学 高校生

上から5行目で、B^2>c^2➕a^2でとけないのか? よろしくお願いします🙇‍♀️

見学院大) [ 155 鈍角と とにな 等式 って 重要 例題 155 三角形の最大辺と最大角 00000 き、この三角形の最大の角の大きさを求めよ。 x>1とする。 三角形の3辺の長さがそれぞれ1.2x+1+x+1であると ■ 日本工大】 153, 154 三角形の最大の角は、最大の辺に対する角であるから、3辺の大小を調べる。 このとき、x>1を満たす適当な値を代入して、大小の目安をつけるとよい。 x-1=3, 2x+1=5, x²+x+1=7 例えば、x=2とすると +x+1が最大であるという予想がつく。 となるから、 三角形の成立条件 b-c| <a<b+c で確認することを忘れてはならない。 なお, x1, 2x+1, x²+x+1が三角形の3辺の長さとなることを CHARI 文字式の大小 数を代入して大小の目安をつける x2+x+1-(x2-1)=x+2>0 x2+x+1-(2x+1)=x2-x=x(x-1) > 0 よって, 3辺の長さを x2-1, 2x+1, x2+x+1とする三角形が 存在するための条件は x>1のとき ~_x³²Fx+1 ≤ (x²-1)+(2x+1) 整理すると x>1 したがって, x>1のとき三角形が存在する。 また、長さがx2+x+1 である辺が最大の辺であるからこの 辺に対する角が最大の内角である。 この角を0とすると, 余弦定理により cos0= = したがって (x²−1)²+(2x+1)² − (x²+x+1)² 2(x2-1)(2x+1) ¸xª−2x²+1+4x²+4x+1−(x²+x²+1+2x³+2x+2x²) 2(x2-1)(2x+1) -2x3-x2+2x+1 2(x2-1)(2x+1) (x2-1)(2x+1) 2(x2-1)(2x+1) 0=120° == = 2x3+x2-2x-1 2(x2-1)(2x+1) 1 2 x²+x+1が最大という予 想から、次のことを示す。 x2+x+1>x-1 x²+x+1>2x+1 三角形の成立条件 lb-cl <a <b+c は、 が最大辺のとき a<b+c だけでよい。 r-1. e 241 2x+1 tx+1 ◄2x³+x²-2x-1 =x2(2x+1)-(2x+1) =(x-1)(2x+1) 18

回答募集中 回答数: 0
数学 高校生

白チャートの重心の問題です! (2)がわかりません!分かりやすく解説お願いしたいです!

1 & the △ABCの重心をG, 直線AG, BG と辺BC, AC の交点をそれぞれD, E とする。また, 点Eを通り BC に平行な直線と直線AD の交点をFとする。 AD=aとおくとき,線分 AG, FG の長さをα を用いて表せ。 (2) 面積比 △GBD : △ABC を求めよ。 CHARI GUIDEMOC 三角形の重心 2:1の比辺の中点の活用く (1)(後半) 平行線と線分の比の関係により AF:FD を求める。 E は辺 AC の中 点であることに注意。 (2) △ABDと△ADC, △ABG と AGBD に分けると, それぞれ高さは共通で等し いから、面積比は底辺の長さの比に等しいことを利用する。 解答 (1) G は △ABC の重心であるから AG: GD=2:1 AG =- -AD=- a 2 2 よって 2+1 3RD DE CASA また,Eは辺ACの中点であり, FE//DCであるから AF : FD=AE: EC=1:1 A よって ゆえに AF-12/AD-124 FG=AG-AF = すると = 1/30-120- よって したがって a ²-0-1-a=—a (2) 点Dは辺BCの中点であるから AABC=2AABD また. AD: GD=3:1 であるから AABD=3AGBD AABC=6AGBD $ROS AGBD:AABC=1:6 B ① B Bh' 2/F D G A ID E1108 GSGRO084 (1) 中 ign/58 h A = CRO 080平行線と線分の比の関係 8308 内高さがんで共通 HAABC: AABD 3章 C 三角形の辺の比,外心・内心・重 ←高さがん で共通 SAABD: AGBD =BC : BD IL =AD: GD

回答募集中 回答数: 0
数学 高校生

(2)の線を引いたところの変形がわかりません。 教えて下さい🙇

298 定積分と導関数 基礎例題 186 次の関数をxで微分せよ。 (1) y=f(x+t)edt CHARI & GUIDE 定積分と導関数 IMEA (2) Ut 1500=2+1+²8=Quic (1) 積分変数tに無関係なx を の前に出してから,両辺をxで微分する。 よって (2) _y=²* cos²t dt (2) 上端,下端ともにxの関数であるから、直ちに上の公式を適用してはいけない。 F'(t)=cos2t 1 cos2t の原始関数を F (t) とする。 ... y=F(2x)—F(x) ____ d*f(t)dt = f(x) aは定数 dx Ja ■解答■ (1) S. (x+t)dt=xSoe'd Stedt であるから 2② 右辺の定積分を, F(t) を用いた形で表す。 ③両辺をxで微分する。 F (2x)の微分に注意。 =(2x+1)e*-1 (2) cos't の原始関数を F(t) とすると 231=5025 に出す。 y=(x) fied+x(can Seal)+ axSoted fieldt の微分は、風の Jo 導関数の公式を利用。 ・2x =S*e'dt+x•e*+xe*=[eª]* + 2x +2xe* costdt=F(2x)-F(x), F'(t)=cos2t d 2x y'= cos'tdt=2F'(2x) — F'(x) dx Jx =2cos22x-cos'x =thiniat d (g(x) [参考] f(t)dt=f(g(x))g'(x)f(h(x)) h'(x) dx Jh(x) 証明 f(t) の原始関数をF(t) とすると F'(t)=f(t) よって EX 186③ 次の関数をxで微分せよ。 (1) y = sin2tdt So (g(x) de Snc f(t)dt = d [F(x)]" x = d (F(g(x))-F(h(x))} dx Jn(x)" dx dx =F'(g(x))g'(x)-F'(h(x))h'(x) =f(g(x)) g'(x)-f(h(x))h'(x) ←xは定数とみて,「の前 定積分の定義 IN HET 合成関数の導関数 定積分で表され 基礎例題 関数f(x)= CHART&GUIDE の公式である。 合成関数の導関数 CHART &GUID この式で g(x)=x, h(x)=α(定数)の場合 が.上の *x (2) y=S codt (3) y=f*(x-t)sint 解答 1 f'(x) f'(x)=0 と 0≤x≤x T ここで ゆえ f(x ya

回答募集中 回答数: 0
数学 高校生

0が含むか否かはどういう基準ですか?

318 基本例題188 関数のグラフの概形 (2) ・・・ 対称性に注目 ①①0 関数 y=4cosx+cos 2x (-2≦x≦2π) のグラフの概形をかけ。 基本 187 指針 関数のグラフをかく問題では, 前ページの基本例題187同様 定義域, 増減と極値、凹心 と変曲点, 座標軸との共有点, 漸近線 などを調べる必要があるが,特に, 対称性に注 目すると、増減や凹凸を調べる範囲を絞ることもできる。 f(-x)= f(x) が成り立つ (偶関数) グラフは f(-x)=f(x) が成り立つ (奇関数) 解答 ① y=f(x) とすると, f(-x)=f(x) であるから, グラフはy軸 に関して対称である。 この問題の関数は偶関数であり,y'=0, y" =0の解の数がやや多くなるから、 の範囲で増減凹凸を副べて表にまとめ, 0x2におけるグラフをy軸に関して に折り返したものを利用する。 =–4sinx(cosx+1) =–4(cosx+1)(2cosx−1) 0<x<2πにおいて, y = 0 となるxの値は, sinx = 0 または y' 3" y'=-4sinx-2sin2x=-4sinx-2・2sinxcosx 2倍角の公式。 y=-4cosx-4cos2x=-4{cosx+(2cos2x-1)} 20 : cosx+1=0から x=π y" =0 となるxの値は, cosx+1=0 または2cosx-1=0から(*)の式で, CoSx+120 5 に注意。 sinx, 2cosx-1 の符号に注目。 (E よって, 0≦x≦2におけるyの増減, 凹凸は,次の表のようになる。 (*) - x= お π 3 π " 3 0 3 2 18 +1 π, ↑ π 0 20 3 -3 π *** ++ 軸対称 グラフは原点対称 |53+0 32 π 3″ : y 5 ゆえに, グラフの対称性により, 求めるグラフは右図。 +0 [参考] 上の例題の関数について, y=f(x) とすると よって, f(x) は2πを周期とする周期関数である。 C 5 ◄cos (- (数学ⅡI) 2π 7 (OR) (200 (2)y= 重要 189,190 y=-4sinx-2sin2xを 微分。 - -2π 5 ミル = COS π 3 YA 15 3 f(x+2)=f(x) この周期性に注目し,増減や凹凸を調べる区間を 0≦x≦2に絞っていく考え方でもよい。 ←数学Ⅱ 参照。 70 -3π sink Xの 練習 次の関数のグラフの概形をかけ。 ただし, (2) ではグラフの凹凸は調べなくてよい。 188 (1) y=er-¹ (-1<x<1) ex sin 3x-2 sin 2x+sinx (-75x5) [(1) 横浜国大〕 Op.325 EX161 重要 方程式 指針陰 中 1²2 解答 方程式で は成り立 よって, 8-x²MC 0<x<2. y' = √ y=2 y'=0と また、C 0≤x≤ なる。 よって [ 参考 した 練習 189

回答募集中 回答数: 0
数学 高校生

ここの拡大したところの解説お願いします

のの人 0 の をともとよたするるたえ。 ただい 8の9る か の:もす 全 ななので、をのうものなくとも3っで テー MR 9 た72Wef<ros Wem 4 ピーウスPHも [=和の3うち3の のWU FmT2mでf: GAうとGtはまくWeいも もった をOK人Taのの 5いいにをで ーー のRA am の上かく上てのでは (ます4にちのRの ををHPgまで人> ここざなまで tmしたのはこのWでにがををういとらで Raてもの たのでもとこと= ETYHHNTS 上 0 rのPSS でめもこをきま \しrdともmWのならで ーー にyu っerr meme fra こhi人ので ゃとのビもち の たかrのeoまT、 0をちゃとのとちち のでad SFePeとように 所とも人weのでfyもと のW7をAすとアもな9、人からた ャとのうちのタな(と てうっPeあまことーー まどか ピー a FaDますこアニー をまたいでで おらいarの人あせきすうすミア てRTもいとしです.するとWeなここでた WFCとまし Pe にrmsrperのnn y er7 Beerprihr-デーー3e Mew =-2eryhiBp er(6-BSr39ーefg-9 (OB で.ゃ7ウーなので ae er のArをので1もさめものに きら eoて りー (ee rmerrmam にで をP2 meりす (rm ie-wcho=isrsnaicnrcn hasaooryctt っ (HOOの-230Vrietnl ota earanoe 2Wwesharitp穫 play 人 Le Budnor am ee人R 29rEWLてKr#和6お38いで してか11の上もをととしたもので (eり1D STewen

回答募集中 回答数: 0