数学
高校生

上から5行目で、B^2>c^2➕a^2でとけないのか?
よろしくお願いします🙇‍♀️

見学院大) [ 155 鈍角と とにな 等式 って 重要 例題 155 三角形の最大辺と最大角 00000 き、この三角形の最大の角の大きさを求めよ。 x>1とする。 三角形の3辺の長さがそれぞれ1.2x+1+x+1であると ■ 日本工大】 153, 154 三角形の最大の角は、最大の辺に対する角であるから、3辺の大小を調べる。 このとき、x>1を満たす適当な値を代入して、大小の目安をつけるとよい。 x-1=3, 2x+1=5, x²+x+1=7 例えば、x=2とすると +x+1が最大であるという予想がつく。 となるから、 三角形の成立条件 b-c| <a<b+c で確認することを忘れてはならない。 なお, x1, 2x+1, x²+x+1が三角形の3辺の長さとなることを CHARI 文字式の大小 数を代入して大小の目安をつける x2+x+1-(x2-1)=x+2>0 x2+x+1-(2x+1)=x2-x=x(x-1) > 0 よって, 3辺の長さを x2-1, 2x+1, x2+x+1とする三角形が 存在するための条件は x>1のとき ~_x³²Fx+1 ≤ (x²-1)+(2x+1) 整理すると x>1 したがって, x>1のとき三角形が存在する。 また、長さがx2+x+1 である辺が最大の辺であるからこの 辺に対する角が最大の内角である。 この角を0とすると, 余弦定理により cos0= = したがって (x²−1)²+(2x+1)² − (x²+x+1)² 2(x2-1)(2x+1) ¸xª−2x²+1+4x²+4x+1−(x²+x²+1+2x³+2x+2x²) 2(x2-1)(2x+1) -2x3-x2+2x+1 2(x2-1)(2x+1) (x2-1)(2x+1) 2(x2-1)(2x+1) 0=120° == = 2x3+x2-2x-1 2(x2-1)(2x+1) 1 2 x²+x+1が最大という予 想から、次のことを示す。 x2+x+1>x-1 x²+x+1>2x+1 三角形の成立条件 lb-cl <a <b+c は、 が最大辺のとき a<b+c だけでよい。 r-1. e 241 2x+1 tx+1 ◄2x³+x²-2x-1 =x2(2x+1)-(2x+1) =(x-1)(2x+1) 18

回答

まだ回答がありません。

疑問は解決しましたか?