学年

教科

質問の種類

数学 高校生

(2)のED:DFの問題が分かりません 解説よろしくお願いします🙇‍♀️

解答 基本 ((1) 例題 182 チェバの定理, メネラウスの定理 ( 1 ) 467 00000 1辺の長さが7の正三角形ABC がある。 辺AB, AC上にAD=3,AE=6 となるように2点D, E をとる。このとき, 線分 BE と CD の交点をF, 直線 AF と辺BC の交点をGとする。 線分 CG の長さを求めよ。 ( (2) △ABCにおいて,辺AB 上と辺 AC の延長上にそれぞれ点E,F をとり, 「AE: EB=1:2, AF:FC=3:1 とする。 直線 EF と直線 BCの交点をDと するとき, BD: DC, ED: DF をそれぞれ求めよ。 指針 図をかいて,チェバの定理, メネラウスの定理を適用する。 (1)3頂点からの直線が1点で交わるならチェバの定理 (2)三角形と直線1本で メネラウスの定理 B (1) AD=3,DB=7-3=4,AE=6,CE=7-6=1 △ABCにおいて, チェバの定理により BG CE AD =1 GC EA DB 駅やウ BG 13 すなわち =1 GC 64 BG -=8から BG=8GC GC よってCG=1/2BC=1/1 •7= り 79 B D ---- A -co- 3 -----6---- 7-----GC p.465 466 基本事項 3 3 ② B (2) (3) =1 (2) (3) E 3章 12 (2)△ABCと直線 EF について, A メネラウスの定理により E メネラウスの定理を用い るときは, 対象となる三 角形と直線を書く。 SoxneBD CF AE 2 =1 3 DC FA EB ③ C E BD 1 1 B D すなわち = 2 BD =6から DC (2)DC 3 BD: DC=6:1 △AEF と直線 BC について, メネラウスの定理により =1 F DC + OB ① ②② ED FC AB ED 13 F = 1 すなわち DF CA BE DF 2 200:08 ① ② 9.-1 ③ =1 ③ ED DF =1から ED: DF =4:3 に内分する点をD, 辺ACを4:3に内分する点 辺BCの交点をFと

回答募集中 回答数: 0
数学 高校生

(2)⑭についての質問です。 答えがわかっていたので、答えに合わせるように計算を行いました。 その時の計算式で Xの分散を小数第5位(0.81142)まで書いて計算しないといけない理由が分かりません。 教えて欲しいです。

例題2 [データの変換] 3 かし 温度の単位として, 損氏(℃)のほかに華氏 (°F)があり、℃とが同 じ温度を表すときのxとの関係は,,v=1.8c+32であることが知られて いる。 日本のある都市において, 1週間の最高気温を測定したデータが次の表 のようであった。 このとき、 次の値を求めよ。 ただし, 平均値は四捨五入 して小数第1位まで, 分散は四捨五入して小数第2位まで求めよ。 最高気温(℃) 8.5 9.2 10.8 8.2 日 月 火 水 木 金 土 8.7 7.9 8.3 (1) 最高気温の平均値と分散 ヒント 共分 Sky の偏差をgの偏差の 私の平均値 (2) 華氏 (°F) で表したときの最高気温の平均値と分散 解答 r= Sty Sx3y (1) 最高気温を表す変量を℃とすると, xの平均値は IC == // (8.5+9.2+10.8+8.2+8.7+7.9+8.3)=Dg.8 (℃) であるから, x-xと (x-x)の値は下の表のようになる。 8.5 9.2 10.8 8.2 8.7 ◆平均値 =(エエエッ 7.9 8.3 x-x -0.3 0.4 2.0 -0.6 ② -0.9 3 (xx) 20.09 0.16 4.00 0.36 ④ 0.81 5 分散 s よって,x の分散szは,s2=1/2x65,68 S = 00.8114285.7.... ²= {(x1−x)²+(x2-x)² n より, 四捨五入すると,08 +…+(x_x)}} (2) 華氏で表したときの最高気温の変量を°Fとすると, xとyに y=1.8c+32の関係があるから, yの平均値y は 9 y= 1-8 +1032 147-84 (°F) y=ax+bのとき 98.8 y=ax+b より、四捨五入すると, 華氏で表したときの平均値は,1247.8 F また,yの分散 sy2は 2 13 1.8 Xs2=14 より、四捨五入すると、華氏で表したときの分散は12,63 y=ax+bのとき s₁²=a²s₁² →1.8×1.8×0.81142 = 2.6290- 類題2 次の変量xのデータについて, u=- 2 変量をuとする。 x-50 とおいて得られる新しい x:64 52 54 77 60 68 57 65 59 74 次の値を求めよ。 ただし, 必要であれば, 61=7.8 として計算せよ。 (1)の平均値と標準偏差 (2)の平均値と標準偏差 例題2の答 1 8.8 2 -0.1 (30.54 0.01 15 0.25 65.68 70.811... 8 0.81 9 1.8 10 32 11 47.84 12 47.8 13 1.8 14 2.629・・・ 15 2.63 145

未解決 回答数: 1
1/42