学年

教科

質問の種類

数学 高校生

確率の問題の質問です。(2)のP(0)に関してです。 P(0)は、「自分が持ってきたプレゼントを受け取る人数が0人」という事ですよね。A B C Dの各々が持ってきたプレゼントは誰にも配られないという事ですよね? そうなるとP(0)の答えは存在しなくないですか? 回答よろ... 続きを読む

基本 例題 45 和事象・余事象の確率 00000 (2) 自分が持ってきたプレゼントを受け取る人数がん人である確率を P(k) と これらのプレゼントを一度集めてから無作為に分配することにする。 あるパーティーに, A, B, C, Dの4人が1個ずつプレゼントを持って集まった。 (1)AまたはBが自分のプレゼントを受け取る確率を求めよ。 する。P(0), P (1) P(2), P(3), P (4) をそれぞれ求めよ。 基本 43 44 指針 (1) A, B が自分のプレゼントを受け取るという事象をそれぞれA,Bとして 和事象の確率 P(AUB)=P(A)+P(B)-P(A∩B) 解答 を利用する。 (2) P(0) が一番求めにくいので,まず,P(1)~P(4) を求める。そして,最後に P(0) をP(0)+P(1)+P(2)+P(3)+P(4)=1 (確率の総和は1)を利用して求める。 (1) プレゼントの受け取り方の総数は 4! 通り A,Bが自分のプレゼントを受け取るという事象をそれ ぞれA, B とすると, 求める確率は P(AUB)=P(A)+P(B)-P(A∩B) 3! 3! 2! 6 6 2 + + 4個のプレゼントを1列 に並べて, Aから順に受 け取ると考える。 〒441-4! 2424=2Aの場合の数は,並び 24 12 (2) P(4),P(3), P(2), P (1) P(0) の順に求める。(A) [1] k=4 のとき, 全員が自分のプレゼントを受け取る から1通り。 よって 1 = 1 P(4)=- 424 4! 24 [2] k=3となることは起こらないからP (3) =0 [3] k=2のとき,例えばAとBが自分のプレゼント) を受け取るとすると, C, D はそれぞれD, Cのプレ ゼントを受け取ることになるから通り □□□の3つの に, B, C, D のプレゼン トを並べる方法で3!通 3人が自分のプレゼン を受け取るなら、残り 人も必ず自分のプレゼ トを受け取る。 自分のプレゼントを受 よって P2)=4C2X1_11) 4! 4 [4] k=1のとき, 例えばA が自分のプレゼントを受け 取るとすると, B, C,D はそれぞれ順に C D B ま たは D,B,Cのプレゼントを受け取る2通りがある 検討 取る2人の選び方は 通り。 から P(1)= 4C1X2_1 AC (A) = 4! 3 L [1]~[4] から P(0)=1-{P(1)+P(2)+P(3)+P(4)} k=0のときは4人の 完全順列 (p.354) の数 =1-11/3 あるから 1 1 + + 4 24 8 3 = よって P(0)=1 P(0)==

回答募集中 回答数: 0
数学 高校生

10(3)と11(2)が分かりません。 それぞれ答えは100通り、2022通りになります。 特に(2)はどんな方法でやるのが1番早いでしょうか? よろしくお願いします

10 [2022 慶応義塾大] ある学校では,ドミソシの4つの音を4つ組み合わせて チャイムを作り, 授業の開始・終了などを知らせるため に鳴らしている。 チャイムは,図1のように4×4 の格 子状に並んだ16個のボタンを押すことによって作るこ とができる。 縦方向は音の種類を表し、横方向は時間を 表している。 例えば,ドミソシという音を1つずつ、順 番に鳴らすチャイムを作るには、 図2のようにボタンを 押せばよい(押したボタンを◎で表している)。 ただし、鳴らすことのできる音の数は縦1列あたり1つ だけであり,音を鳴らさない無音は許されず,それぞれ の列で必ず1つの音を選ばなければならないとする。 このとき 図1 音の種類 ・時間 音の種類 時間 図2 (1) 4つの音を1回ずつ鳴らすことを考えた場合,チャイ ムの種類は | 通りになる。 (2) (1)に加えて,同じ音を連続して2回繰り返すことを1度だけしても構わない (例: ドミミソ) とした場合、チャイムの種類は合わせて 通りになる。 ただし, 連続 する音以外は高々1回までしか鳴らすことはできず,それらは連続する音とは異なら なければならないものとする。 (3)(1)と(2)に加えて,同じ音を連続して4回繰り返すチャイムを許すと, 可能なチャ 通りになる。 イムの種類は合わせて 11 [2022 岩手大] ある公園には右の図の線で示されるような歩道が造られて いる。また,この公園内には図のP,Q,R の3地点にだ け水飲み場が設置されている。 IP (1) A地点から歩道を通ってB地点に至る最短の経路のう ち P地点の水飲み場を通るものは何通りあるか。 (2) A地点から歩道を通ってB地点に至る最短の経路のう ち, 水飲み場を1回以上通るものは何通りあるか。 A 20 IR B

回答募集中 回答数: 0
数学 高校生

数2 微分 なぜ答えのようになるのかわかりません。 Bはゼロに近づくから、0になるのではないのですか?教えてくださると嬉しいです🙇

324 基本例題 202 変化率 00000 (1)地上から真上に初速度 49m/s で投げ上げられた物体のt秒後の高さんは h=49t-4.9f(m) で与えられる。この運動について次のものを求め、 し, vm/sは秒速vm を意味する。 (ア) 1秒後から2秒後までの平均の速さ (2) (0)-3 めよ。 (イ)2秒後の瞬間の速さ とき,球の体積の5秒後における変化率を求めよ。 ふたた P.314 基本事項 指針 (1)高さんは時刻tの関数と考えることができる。 h=f(t)=49t-4.9t2 とする。 (ア) 平均の速さとは,平均変化率と同じこと。(んの変化量)÷(tの変化量)を断 算。 (イ) 2秒後の瞬間の速さを求めるには, 2秒後から2+6秒後までの平均の速さ 均変化率) を求め, 60のときの極限値を求めればよい。 つまり、微分係 f' (2) が t=2における瞬間の速さである。 (2) まず, 体積Vを時刻tの関数で表す。 これをV=f(t) とすると, 5秒後の変化率 は t=5 における微分係数 f' (5) である。 重要 例足 xの多項 る。 (1) f(x) (2) f(x 指針 ( ( 解答(1 (1) (ア) (49.2-4.9・22)(49・1-4.9・12) 2-1 =34.3(m/s) tがαから6まで変化す 解答 (イ) t秒後の瞬間の速さは,んの時刻 t に対する変化率 るときの関数f(t)の平 均変化率は f(b)-f(a) 7D dh b-a である。 んをt で微分すると =49-9.8t dh dt については、下の (1)=4 dt 求める瞬間の速さは, t=2として 49-9.8・2=29.4(m/s)=p 注意 参照。 '=49-9.8t と書いてもよいが、 (2) t秒後の球の半径は (10+t) cm である。 dt t秒後の球の体積を V cm とするとV=1(10+t V を tで微分して 求める変化率は,t=5として 4л(10+5)=900π (cm³/s) と書くと関数を 微分していることが式か ら伝わる。 =n(ax+b)"'(ax+b) 変数がx,y以外の文字で表されている場合にも, 導関数は今までと同様に取り扱う。例え (1+(1) 4 d=1/2x3(10+t) 2.1=4z (10+t) { (ax+b)"} ば、関数=f(t) の導関数はf(t), dh dt' dt df(1) などで表す。また,この導関数を求め ることを、変数を明示してん を tで微分するということがある。 練習 (1) 地上から真上に初速度 29.4m/s で投げ上げられた物体のt秒後の高さんは、 で与えられる。この運動に ④20

回答募集中 回答数: 0
数学 高校生

数II 微分 この問題の答えが私が解いた答えと合わないのですが、なぜ答えのようにならなくてはいけないのかわかりません。赤線引いたところが間違えたところです。 教えていただきたいです🙇‍♀️

356 重要 例題 224 区間に文字を含む3次関数の最大・最小 f(x)=x-6x2+ 9x とする。 区間 a≦x≦a+1 における f(x) の最大値 求めよ。 指針 この例題は, 区間の幅が1 (一定) で, 区間が動くタイプである。 00000 M() を 基本200 まず, y=f(x) のグラフをかく。次に, 区間 a≦x≦at1をx軸上で左側から移動し ながら, f(x) の最大値を考える。 場合分けをするときは,次のことに注意する。 A 区間で単調増加なら, 区間の右端で最大。 区間で単調減少なら, 区間の左端で最大。 両極値をとるxの値がともに区間に含まれることはないから © 区間内に極大となるxの値があるとき,極大となるxで最大。 >0 (8) 区間内に極小となるxの値があるとき, 区間の両端のうちf(x)の値が大きい方 で最大→区間の両端で値が等しくなる場合が境目となる。 すなわち f(x)=f(a+1) となるとαの大小により場合分け。 A 最大 ® (1)M 最大 最大 [2] a<1ma+ 0≦a <1のと f(x)はx=1 M(a)=1 次に, 2 <α <3 f(a)=f(a+1) a3-6a2+▪ 3a² ゆえに よって a= 2 <α <3と5< [3] 1≦a< f(x)はx= M(a)= 解答 最大 または 9+√33 [4] 6 f(x)はx= M(a) f'(x)=3x²-12x+9 =3(x-1)(x-3) f'(x) = 0 とすると x=1,3 f(x) の増減表は次のようになる。 x 1 f'(x) + 0 - 3 f(x) 解答の場合分けの位置のイ y=f(x)メージ 以上から 4--- y=f(x)| 4 NN [2] [3] [4] 0 + 極大| 極小 01 3 a01 a 3a+1 x 4 0 検討 よって, y=f(x)のグラフは右上の図のようになる。 ゆえに、f(x)のa≦x≦a+1における最大値 M (α) は,次 のようになる。 [1] a+1 <1 すなわち α <0の [1] y とき f(x)はx=α+1で最大となり 1指針のA [区間で単調増 加で,右端で最大]の場 最大 合。 M(a) =f(a+1) =(a+1)-6(a+1)^+9(a+1) =a³-3a²+4 1 1 a O 1 a+1 3 3次関数のク p.344 の参考 ラフは点対 はない。す るとき 対称ではな 練習 |上の解答の =1/2とし Q= なお、放物 f(x)=x³- ⑤224よ。

回答募集中 回答数: 0
数学 高校生

質問失礼します! この問題、波線部分の数え上げは書き出してみて、実験してから一般化して考える感じでしょうか? 解答を作れるようになる考え方の流れを教えて頂きたいです。🙇🏻‍♀️

147 例題 14-4 袋の中に3枚(n≧2) のカードがあり,それぞれに, 1から2nまでの整数のど れか1つが書いてある. 奇数 1, 3, 2n-1の書かれたカードは各1枚, 偶数 2, 4,..., 2n の方は各2枚である. この箱から同時に2枚のカードを無作為に選び、 そのうち最大の数字を X とする. (1) 2≦k≦2mとするとき, 確率P (X≦k) を求めよ. (2) 2≦k≦2n とするとき 確率 P (X=k) を求めよ. 【解答】 (1) 3枚のカードから2枚を取り出す方法は, K:50時 11③⑤.7. よって, 以上まとめて, P(X≦k)= 3n(3n-1) k(3k-2) 4n(3n-1) (k-1)(3k-1) 4n(3n-1) (kが奇数のとき), P(X≦k) = k(3k-2) 4n(3n-1) (kが偶数のとき)。 3nC2= (通り) 3n(3n-1) 2.4.6.8. (2) (i) が奇数のとき, P(X=k)=P(X≦k) -P (X≦k-1). 2 (i) が奇数のとき (24.6.8. k+ 以下のカードは P(X=k)= (k-1)(3k-1) (k-1)(3k-5) k-1 n(3n-1) 4n(3n-1) 4n(3n-1) k+1 奇数のカードが #x, =k-1 )が偶数のとき, 偶数のカードが1枚 P(X=k)=- k(3k-2) (k-2)(3k-4) 4n(3n-1) 4n(3n-1) k+1 計 +k-1= 3k-1 2 枚あるから, X≦kとなる場合の数は 2(k-1) n(3n-1) 3k-1.3k-3 異なる 2 14- 2 よって、31枚から (2枚取り出す。 99 (3k-1)(3k-3) P(X≦k)= 3n(3n-1).4 (3k-1)(k-1) () が偶数のとき, k以下のカードは 4n(3n-1) 奇数のカードが1枚 偶数のカードがk枚 +k=k枚あるから, X≦kとなる場合の数は 22C2= 2 148

回答募集中 回答数: 0
1/277