学年

教科

質問の種類

数学 高校生

⑴(iii)教えてください!!

【4】 中の見えない袋の中に赤玉1個と白玉2個が入っている。このとき,次の試行 T:袋から玉を1個取り出し, 色を確認してから元に戻す をくり返し行う. このとき,次の各問いに答えよ. 結果のみではなく、考え方の筋道も記せ. (1) 試行Tを4回くり返すとき、 次の確率を求めよ. (i) 4回とも同じ色の玉を取り出す確率. () 4回目に取り出すのが2度目の赤玉である確率. () 赤玉を2回以上連続して取り出す確率. (2)袋に黒玉を1個追加して、試行Tをくり返す. 1回の試行で赤玉を取り出すと2点, 白玉を取り出すと1点もらえるが,黒玉を 取り出すとそれまでに獲得した点数が0点になるとする. 試行を何回かくり返し, 獲得した点数の合計をX とする.たとえば,試行を5回くり返し, 白玉,白玉,黒玉,赤玉、白玉 の順に玉を取り出すと, 3回目に黒玉を取り出したのでそれまでの得点は0点とな り4回目の赤玉の2点と5回目の白玉の1点の合計から,X = 3 である. (i) 試行を7回くり返すとき,X = 0 である確率を求めよ. () 試行を7回くり返すとする, X=6である確率を求めよ. また, X = 6 である とき,少なくとも2回は赤玉が取り出されていた条件付き確率を求めよ. () 試行を3回くり返すとき,Xの期待値を求めよ. (50点)

未解決 回答数: 1
数学 高校生

確率の最大値の問題なのですが2つの問題どちらも全くわからないので解説して頂きたいです😭🙏 お願いします🙇‍♀️

11 確率の最大値 きれているのが致した。頑をを取り出すとき、2枚だけが 号で残りの(k-2)枚はすべて異なる番号が書かれている確率をp (k) とする. (1) p(k+1) p(k) (4≦k≦9) を求めよ. つず A ある 福岡教大/一部省略) (2) (k) (4≦k≦10) が最大となるkを求めよ. 確率の最大値は隣どうしを比較 確率 (k) の中で最大の値 (または最大値を与えるk) を求める 問題では、隣どうし[p(k)とか(k+1)] を比較して増加する [p(k) p (k+1)]ようなkの範囲を求 (k) (k+1)の大小を比較すればよいのであるが,p(k)とか(k+1)は似た形をしているの で 力(k+1) p(k) を計算すると約分されて式が簡単になることが多い。 p(k+1) p(k) ≧ 1⇔ p(k) ≤ p (k+1) である. 解答 (1) 30枚からk枚 (4≦k≦10) を取り出す取り出し方は 30Ck通りあり,これ らは同様に確からしい.このうちで題意を満たすものは 同じ番号の2枚につい て番号の選び方が10通りで番号を決めると色の選び方がC2 通り, 異なる番号 の (k-2)枚について番号の選び方がCk-2 通りでそれを1つ決めると色の選び 方が3k-2通りある. 10-3-9Ck-2-3-2 よって, p(k)= 30Ck p(k+1) 9Ck-1-3k-1 p(k) 30Ck 10-3 を約分 30Ck+1 9Ck-2-3-2 (k+1)! (29-k)! 30! 9! (k-2)! (11-k)! -.3 ←順に, 30! k! (30-k)! (k-1)! (10-k)! 9! 3(k+1) (11-k) 1 30Ck+1 最後の3は3-1と3-2 を約分. 1 30Ck, 9Ck-1, 9Ck-2 (k-1) (30-k) (2) p(k) sp(k+1) s )= p(k+1) p(k) ≧1⇔ 3(k+1)(11-k -≧1 p(k)>0, p(k+1)>0 (k-1) (30-k) ① は を D ⇔3(k+1)(11-k) ≧ (k-1)(30-k)⇔k(2k+1)≦63 5.(2·5+1)<63<6·(2・6+1) であるから, ①を満たすにはk=4,5で①の等 kは4~9の整数 号は成立しない。 よって p(4)<p(5)<p(6), p(6)>p(7)>p(8) >p (9)>p(10) となり, p(k) が最大となるんは 6. 11 演習題 (解答はp.52) 当たりくじ2本を含む5本のくじがある. このくじを1本引いて, 当たりかはずれか を確認したのち, もとに戻す試行をT とする. 試行Tを当たりくじが3回出るまで繰り 返すとき, ちょうど回目で終わる確率をp (n) とする. (1) 試行Tを5回繰り返したとき, 当たりが2回である確率を求めよ. (2) n≧3として, p(n) を求めよ. (3) p(n)が最大となるnを求めよ. (芝浦工大) n回目が3回目の当たり なので,それまでに当た りは2回(3)は例題と 同じ手法を使う. 44 る 3

未解決 回答数: 1
1/29