学年

教科

質問の種類

数学 高校生

数IIの微分の範囲です。 x=4/3aまでは分かるのですが、その後の[1][2][3]のところが全くわかりません。M(a)=f(1)とかの操作が何をしてるのかわかりません。 解説よろしくお願いします。

基本例題 213 係数に文字を含む 3次関数の最大・最小 ①①①①① aを正の定数とする。3次関数f(x)=x-2ax2+α'x の 0≦x≦1における最大 値M (α) を求めよ。 [類 立命館大 ] 基本 211 重要 214 指針文字係数の関数の最大値であるが,か.329 の基本例題211 と同じ要領で, 極値と区間の端 での関数の値を比べて 最大値を決定する。 f(x) の値の変化を調べると, y=f(x)のグラフは右図のようにな る(原点を通る)。ここで, x=1/3以外にf(x)=f( 3 (これをαとする) があることに注意が必要。 解答 a 3' 合分けを行う。 よって, f'(x)=3x²-4ax+a² =(3x-a)(x-a) f'(x)=0 とすると a α(// <a)が区間 0≦x≦1に含まれるかどうかで場 a>0 であるから, f(x) の増減表 は右のようになる。 x= ここで、x=1/3以外にf(x)=2 f(x)=1/27から ゆえに a 3' x- 3 1</o/ すなわちa>3のとき 3 112] 12/2016/01/314 すなわち2014/12 sisa a 4 2 1-20+ a² x a f'(x) + f(x) 2 x³-2ax² +a²x- 7 ≦a≦3のとき ... [0</1/24 <1 すなわち0<a<2のとき 30</a<1 以上から 4 27 a (x-10/31) 2(x-212/30)=0x401/3であるから したがって、f(x) の 0≦x≦1における最大値 M (a) は a 3 0 |極大 4 27 以外にf(x)=1を満たすxの値を求めると -a³=0 Sw I 注意(*) 曲線 y=f(x) と直線y=d' は, x=- a を満たす a 極小 0 0 0<a<2,3<a のとき M(a)=a²-2a+1 4 M(a) = 27 x= M(a)=f(1) ≦a≦3のとき M(a)=(1/3) M(a)=f(1) -a³ 2 + √( ²3² ) = ²3² (-²3 3 a) ² = 24/7 @² [1] 34 0 で割り切れる。このことを利用して因数分解している。 f(x)=x(x2-2ax+α²) =x(x-a)^ から [2]y 4 2703 YA [3] YA 4 27031 I -a²-2a+1 U 1 a 3 - 10/3 最大 a T T 1 0 I alm 3 1 最大 a 1 a a²2-2a+1 aax [最大] a 1 a 4 0 a 3 a x 4 4 a - 12/12 は、x=1/3の点において接するから、f(x) - 2270'は 27

回答募集中 回答数: 0
数学 高校生

問題⑵⑶の数学的帰納法について4つ質問させて下さい!質問量が多くてすみません… ①写真1枚目の赤の下線を引いた部分について、私の解答(写真2枚目)では全て、整数でなく自然数と書きました。私は赤線部分は自然数の範囲に収まるのかなと思っていたので、なぜわざわざ整数と書いている... 続きを読む

2021年度 〔4〕 α=2, b=1および リー an+1=2a+36, b +1=α+2b (n=1, 2, 3, ...) で定められた数列{an}, {bn}がある。 C = a b とおく。 (1) c2 を求めよ。 149 (2) cm は偶数であることを示せ。 (3) nが偶数のとき, cm は28で割り切れることを示せ。 ポイント 連立の漸化式で定められる2つの数列の一般項の積についての数学的帰納法 による証明の問題。 (1) 漸化式でn=1 とおいて求める。 (2) 数学的帰納法により証明する。 (3)n=2mとおいて, m について数学的帰納法で証明する。 解法 (1) a2=2a+3b1=4+3=7 b2=α +261=2+2=4 より C2=azbz=7×4=28 (2) a1=2,b=1,4+1=2a+3bb1=an+2b (n=1, 2, 3, ... より帰納的に a b が整数であると言えるので, cm=amb" も整数である。 cm が偶数であることを数学的帰納法により証明する。 (I)n=1のとき,c=a,b=2×1=2より C1 は偶数である。 (II)n=kのとき cが偶数であると仮定すると, a b は偶数であるから=211は 整数) とおける。 n=k+1のとき ( Level A TRAIGHT Ck+1=ax+1bk+1=(2a+3b) (+26) =2a²+7ab+6b²=2a²+14Z+6b2² =2(a²+71+3b²2 ) ここで, a2+71 + 3b²2 は整数であるから Ck+1 も偶数である。 (I), (II)より すべての自然数nに対してcm は偶数である。 (証明紋) (3) n=2m(mは自然数とおき, C2mm が28で割り切れることを数学的帰納法によ り証明する。 (I) m=1のとき, c2 = 28 より 28で割り切れる。 (II) m=kのときc2が28で割り切れると仮定すると, 28 (1は整数)とおけ る。 m=k+1のとき C24+2=a2+2b24+2 = (2a2+1+3b2+1) (a2+1+2b2+1) = {2 (2a2+362) +3 (a₂+2b₂)}{2a+3b₂+2 (a₂+2b2x)} = (7a2 + 12b2) (4a24+7b₂24) = 28a2²+97a2b2+84b2² = 28a2²+97-28/+84b2x² = 28 (a24² +971 +3b₂²) D ここで, a² +971 +3bz² は整数であるから 22は28で割り切れる。 (I), (II)より. すべての自然数mに対して C2me は28で割り切れる。 ゆえに,nが偶数のとき, cm は28で割り切れる。 (証明終)

回答募集中 回答数: 0
数学 高校生

213. [3]でaは正の定数だから0<aであることは当然なのに 0<3a/4<1と書いているのは「すなわち」の後で aがどんな正の定数であっても[1],[2],[3]のいずれかに 属するためですか??

とにかく文 がらくになるよう とする。 平方の定理 数の変域を確認 ■柱の体積) 底面積)×(高さ) をVで表す。 0.は変域に含ま ないから、茨城の に対するVの値は 今後、本書の 2/ の方針で書く。 2x(a²- 基本例題213 係数に文字を含む3次関数の最大・最小 aを正の定数とする。3次関数f(x)=x-2ax+αx 0≦x≦1における最大 値M (α) を求めよ。 [類 立命館大] 基本 211 重要 214 指針 文字係数の関数の最大値であるが, p.329 の基本例題211 と同じ要領で, 極値と区間の端 での関数の値を比べて最大値を決定する。 (s) f(x)の値の変化を調べると, y=f(x) のグラフは右図のようにな る(原点を通る)。ここで, x=1/3以外にf(x)=f(1/3)を満たす (これをとする) があることに注意が必要。 よって、1/3 ( 1 <a) 区間 0≦x≦1に含まれるかどうかで場 a <α 3 合分けを行う。 解答 f'(x)=3x²-4ax+a² =(3x-a)(x-a) f'(x)=0 とすると x= a 3 ゆえに " ここで, x=1/3以外にf(x)= 4 a>0であるから, f(x) の増減表f(x) は右のようになる。 練習 1213 a x (*) 4 f'(x) + 3 1≦a≦3のとき 430 a |極大] 4 5a³ 27 を満たすxの値を求めると 4 f(x)=27a²³5x³-2ax² + a²x=27a²=0 αから a |=0 x=1/04 であるから (x - ²)²(x - 3/3-a)= したがって、f(x) の 0≦x≦1における最大値 M (α) は [1] 1</03 すなわちa>3のとき te 3 [2] 1/23 215/1/31 すなわち of sa≦3のとき [3] 0</1/23a <1 すなわち0<a<2のとき 以上から0<a<2,3<a のとき 1: aは正の定数とする。 関数f(x)=- ける最小値m(a) を求めよ。 a 0 極小 3 +: x=- x3 3 3 M(a)=f(1) M(a)=a²-2a+1 M(a)= 24/7a²³ phi M(a)=) M(a)=f(1) a 5+2ax²-2a²x f(x)=x(x2-2ax+α²) =x(x-a)^ から O (3)= (-3/a)² = 27ª² [1] YA [2] y Q3 O YA [3] y α3 -a²-2a+1 I -最大 II 1 a 3 3 a ax 1 a a²-2a+1 O a 3 注意 (*) 曲線 y=f(x)と直線y=27d" は、x=1/3の点において接するから、f(x)は (x-)- で割り切れる。このことを利用して因数分解している。 最大! a 4 a x ax²-2ax+αの区間 0≦x≦2にお p.344 EX 138 331 6章 3 最大値・最小値、方程式・不等式 37

回答募集中 回答数: 0
数学 高校生

106.3 56=2^3×7だから n=p^14(pは自然数)であることはあり得ないから 15=3×5で考えるべきだ。 と頭の中で考えるのは簡単ですが 解答のようにp,qを用いて記述するのがしっくりきません。 p,qを用いない解答例(記述式)があれば教えてください。

472 基本 例題 106 約数の個数と総和 (1) 360 の正の約数の個数と,正の約数のうち偶数であるものの総和を求めよ。 (2) 慶応大] (2) 12" の正の約数の個数が28個となるような自然数nを求めよ。 (3) 56の倍数で,正の約数の個数が15個である自然数nを求めよ。 指針▷ 約数の個数, 総和に関する問題では,次のことを利用するとよい。 自然数Nの素因数分解が N = pag...... となるとき 正の約数の個数は (a+1)(6+1)(c+1)...... E©**** (1+p+p²+...+pª)(1+q+q²+···+q')(1+r+r²+...+pc).….…... (1) 上のN2を素因数にもつとき, Nの正の約数のうち偶数であるものは 2aqb.gc…..... (a≧1,b≧0,c≧0,...;q, r, ・は奇数の素数) 1+ の部分がない。 【CHART 約数の個数, 総和 素因数分解した式を利用 468 基本事項 と表され その総和は (2+2²+...+2ª)(1+q+q²+…+q°)(1+r+r²+...+rc)... を利用し, nの方程式を作る。 (2) (3) 正の約数の個数 15 を積で表し, 指数となる a, b, ・・・・・ の値を決めるとよい。 des 15 を積で表すと, 15・15・3であるから, nは15-11-1または 13-1の形。 となる 解答 (1) 360=2・32・5 であるから,正の約数の個数はAVH-S- (3+1)(2+1)(1+1)=4・3・2=24(個) また,正の約数のうち偶数であるものの総和は ←p,g,r, ….. は素数。 pag're の正の約数の個数は (α+1)(6+1)(c+1) (p,q,r は素数) (2+22+2)(1+3+32)(1+5)=14・13・6=1092 (2) 12"=(22・3)" = 22" ・3" であるから 12" の正の約数が 28 個 であるための条件は (2n+1)(n+1)=28 よって nは自然数であるから n=3 (3)の正の約数の個数は 15 (=15・15・3) であるから, nは 14 または pq2 (p, g は異なる素数) の形で表される。 2n²+3n-27=0 ゆえに (n-3)(2n+9)=0 たら誤り。 積の法則を利用しても求め られる (p.309 参照)。 ONT RJUUS 1=5310 A ◄(ab)"=a"b", (a")"=a™ のところを2m n とし 素数のうち、 偶数は2の みである。 15.1から p15-1g1 5.3 から -13-1 nは56の倍数であり, 56=23.7であるから、n は の形の場合は起こらない。 で表される。したがって, 求める自然数nは n=24・7=784 <p=2, g=7 練習 ② 106 (2)正の約数の個数が3で,正の約数の総和が 57 となる自然数n (3) 300以下の自然数のうち 工の数 求めよ。 (1) 756 の正の約数の個数と、 正の約数のうち奇数であるものの総和を求めよ。 n を求めよ。 重要 例 √√n² +40 指針net よって ここて を利用 このと 更に, CHART 解答 √n²+40=r 平方してn mnは自然 4の約数 また,m+n m+n m-n 解は順に( したがって, 検討 積カ 上の解答の 1つである 答えにたど また,上 の自然数の は、右の が決まるが ある。 ちな という条件 ため、組 しかし, 上 る。なお, 一致する。 更に効

回答募集中 回答数: 0
1/8