学年

教科

質問の種類

数学 高校生

175.2.3 答えを導くまでの記述に問題はないですよね?

したもの 点のx座 すると、 5 x=-1 gcb gea loga.M+I x=1 から ニ t 基本例題 175 対数の大小比較 | 次の各組の数の大小を不等号を用いて表せ。 (1) 1.5, 10g35 点のx座標 ALUMIST 指針 対数の大小比較では, 次の対数関数の性質を利用する。 a>1©¢\0<p<q⇒loga p<loga q 大小一致 0<a<1のとき 0<p<glogp>logag 大小反対 (不等号の向きが変わる ) まず異なる底はそろえることから始める。 (1) 小数 1.5 を分数に直し, 底を3とする対数で表す。 (2) 210g49を底を2とする対数で表す。 係をいた 【CHART 対数の大小 底をそろえて 真数を比較 解答 (2) 2, log49, log25 (3) logo.53, logo.52, log32, log52 p.273 基本事項 ② 貸付 (3) (3) 4数を正の数と負の数に分けてから比較する。 また, 10g32, 10g52の比較では, 真数がともに2であるから, 底を2にそろえると考えやすい。 (1) 1.5=2=log:3=log:31 ** (31)²-3¹-27>5² また 底3は1より大きく35であるから log332>log3 5 したがって 1.5 >log35 (2) 22102210g222=10g24, log49= 底2は1より大きく, 3 <4<5であるから log23 <1024 <1025 すなわち 10g9<2<log25 0.5は1より小さく, 3>2>1 であるから logo.53 <logo.52 < 0 log52= 1 log32= log23 1 <3 < 5 であるから よって すなわち したがって 0 log25 log23² 10222 -=10g23 0<log23<log25 1 1 log25 10g23 練習 2175 (1) 10g23, 10g25 logaq 1 logapty 0 0<log52<log32 logo.53<logo.52 <logs 2 <log:2 で, 底2は1より大きく, S YA a>1 次の各組の数の大小を不等号を用いて表せ。 (2) 10go.33, 10go.35 p 00000 y=logaxのグラフ gx y 0<a<1 10gap OP logag Syz 底はそろえよ <A> 0, B>0ならば A>B⇒A²>B² 底の変換公式。 9 不等号の向きが変わる。 <指針のy=logaxのグラフ から, α>1のとき 0<x<1⇔logax < 0 x>1⇔10gax>0 0<a<1のとき 0<x<1⇔10gax>0 x>1⇔logax < 0 p.293 EX113 (3) logo.54, log24, log34 x 275 5章 31 対数関数

回答募集中 回答数: 0
数学 高校生

何で反復試行になるのか教えてください!!

指針 注意 解答 北または東へ5区画進むうち, 東入 7! AからBまでのすべての道順は 3!4! × =35通りで,そのうちC地点を通る道順は WAZHOURSE (8) 20 5! 35 すべてが同じ確率で起こるとは限らないので注意が必要である。 例えば, D地点を通 2! 2!3! 1!1! -=20通りであるが, 求める確率は としては誤り。35通りの道順は る道順とE地点を通る道順はともに1通りずつであるが, D地点を通る確率は (1216E地点を通る確率は ( 122-1212である。 8 C地点を通るのは,東へ2区画, 北へ3区画進んだ場合である。 3 よって、求める確率は C (12) (12)=1/圏ハラ 16 のとする。 このとき, 次の確率を求めよ。 (1) 甲がC地点を通る確率 コント 20 製品が大量にあるから、 何個か取り出 1 ✓ * 121 右の図のような碁盤の目の道路 (各碁盤の目の東 西間、南北間の距離はすべて等しい)がある。 甲、 乙2人が, それぞれA地点, B地点を同時に出発し, 甲はBに,乙はAに向かって同じ速さで進むもの とする。 ただし、 2人とも最短距離を選ぶものと し,2通りの選び方のある交差点では,どちらを選ぶかは 1/3の確率であるも GA C B to (2) 甲と乙が CD間ですれちがう確率 造した [1 122 硬 1 の (1) 例題 指針 解答 123

回答募集中 回答数: 0
数学 高校生

マーカーのところがよく分かりません!! 答えていただけたらうれしいです!

数学Ⅰ・数学A [2] 表1は、令和3年度における47都道府県別の一住宅あたりの延べ床面積の 平均値のデータであり、値の大きい順に並んでいる。 ただし, 延べ床面積とは, 建物の各階の床面積の合計を表す。 都道府県 富山県 福井県 山形県 秋田県 新潟県 石川県 島根県 岐阜県 長野県 青森県 鳥取県 表1 47 の都道府県別の一住宅あたりの延べ床面積の平均値 都道府県 延べ床面積 (m²) 延べ床面積(m²) 103.15 静岡県 [145.17 山口県 102.30 138.43 99.95 愛媛県 135.18 99.57 熊本県 131.93 128.95 大分県 98.02 宮城県 126.60 97.24 123.08 長崎県 97.20 121.77 高知県 95.32 121.62 愛知県 95.01 121.58 宮崎県 94.39 121.52 広島県 93.52 119.90 兵庫県 93.40 115.49 北海道 91.23 112.65 千葉県 89.74 112.48 鹿児島県 88.67 111.94 埼玉県 87.15 111.05 京都府- 86.93 110.87 福岡県- 84.66 110.42 神奈川県 78.24 108.58 大阪府 - 76.98 107.79 沖縄県 75.77 107.14 東京都 65.90 106.54 105.72 105.64 岩手県 滋賀県 福島県 佐賀県 山梨県 徳島県 奈良県 三重県 香川県 茨城県 群馬県 |栃木県 和歌山県 岡山県 (出典:国土交通省のWeb ページにより作成) - 32- (数学Ⅰ・数学A 第2問は次ページに続く。) また、次の表は, 表1のデータを度数分布表に整理したものである。 第3四分位数 表2 度数分布表 階級 (m²) 60以上70未満 70以上80未満 80 以上 90 未満 90以上100未満 100 以上 110 未満 110 以上 120 未満 120 以上 130未満 130以上140未満 140 以上 150 未満 度数(都道府県数) - 33- 1 3 5 11 8 8 7 3 1 数学Ⅰ・数学A (数学Ⅰ・数学A 第2問は次ページに続く。)

回答募集中 回答数: 0
1/4