学年

教科

質問の種類

数学 高校生

この空白がわかる方いらっしゃいましたら教えてほしいです。

太郎さんと花子さんは次の問題について話し合っている。 問題ある2次方程式の2つの解を α, β とする。α+β=4, a2+β2=-10 で あるように2次方程式を1つ定めよ。 以下の空らんを埋め, 太郎さんと花子さんの会話を完成させよ。 太郎: x2の係数が1であるとき, 2数α, βを解とする2次方程式は x2+ コx+ロコー =0であるから, αβ の値がわかればいいんだよね。 花子 : αβ を求めるために, α2+2=-10が利用できそうだね。 太郎: 本当だ。α+ βを2乗するとαβ が現れるから,aβ を a+β,a2+β2 を用い てすと αβ だね。 花子: 数値を代入すると,αβ= だね。 つまり,答えの1つは |=0 だね。 太郎: 他に考え方はないかな。たとえば, α+β=4 から, 実数 p を用いて,求める 2次方程式をx-4x+p=0 としてみたらどうだろう。 花子:解の公式を用いると,この2次方程式の解はx=2士, となるね。 たとえばα=2+ β=2- として,α2+β2=-'v からの値を求めるのはすごく大変だよ。 太郎: 2次方程式の解と係数の関係を用いた最初の解答は,比較的簡単な計算で解け るんだね。 花子 : 求めた2次方程式の解はx=| となることから,解の種類に関わら ず解と係数の関係が成り立つ点も便利だね。 し

回答募集中 回答数: 0
数学 高校生

こちらの空白に入る答えがわかりません、、わかる方いらっしゃいましたら教えてほしいです。お願いします

問2 太郎さんと花子さんは次の問題について話し合っている。 問題ある2次方程式の2つの解を α, β とする。 α+β=4, a2+B2=-10 で あるように2次方程式を1つ定めよ。 以下の空らんを埋め, 太郎さんと花子さんの会話を完成させよ。 太郎: x2 の係数が1であるとき, 2 数α,βを解とする2次方程式は x2+ x+ |=0であるから, αβ の値がわかればいいんだよね。 花子: αβ を求めるために, α2+2=-10 が利用できそうだね。 太郎:本当だ。α+ βを2乗すると αβ が現れるから,aβをa+β,a2+β2 を用い て表すと αβ= |だね。 花子:数値を代入すると,αβ= だね。 つまり,答えの1つは 0 だね。 太郎:他に考え方はないかな。たとえば, α+β=4 から, 実数を用いて,求める 2次方程式をx2-4x+p=0 としてみたらどうだろう。 花子:解の公式を用いると,この2次方程式の解はx=2土 となるね。 たとえばα=2+ B=2- として,α2+β2=-'v からの値を求めるのはすごく大変だよ。 太郎 : 2次方程式の解と係数の関係を用いた最初の解答は,比較的簡単な計算で解け るんだね。 花子 : 求めた2次方程式の解はx=| となることから,解の種類に関わら ず解と係数の関係が成り立つ点も便利だね。 し

回答募集中 回答数: 0
数学 高校生

この問題の エオで解答2ページを見た時に矢印の変換がなぜそうなるかわからないです(>_<) なぜ上の式からBは-4にならないことがわかるのですか? 教えてください!!!!

例題太郎さんと花子さんは方程式の解の個数に関する問題について話している。 二人の会 話を読んで、下の問いに答えよ。 問題 3次方程式(x-2)(ar2+bx+4)=0 (a,bは定数) が異なる二つの実数解をもつと きαをの式で表せ。 太郎: この3次方程式は (1次式)×(2次式)=0の形になっているから,x-2=0より,一つの実 数解がx=2だとわかるよ。 花子: そうすると, 2次方程式 ax+bx+4=0が残りの一つの実数解をもてばいいから, (i) 2次方程式 ar²+bx+4=0がx=2以外の重解をもつ場合 (ii) 2次方程式 ar2+bx+4=0がx=2ともう一つの異なる解をもつ場合 を考えればいいね。 まずは (i) の場合を考えてみると・・・ 判別式を利用して, a= となるわ イウ 太郎: だけどこれだと2次方程式の解がx=2の場合も含んでいて, 2次方程式の重解がx=2 だと,3次方程式の解は一つになってしまうから 2次方程式の解がx=2となるときを除 外しよう。 花子: そうか。 つまり6 キエオだね。 太郎: その前に他に何か忘れていることはなかったかな? 花子: そういえば, 「3次方程式」 と書いてあるから・・・。 太郎: あっ! そうだ! ar+bx+4は必ず2次式になるから,αキ カだね。 次は, (ii) の場合を考えよう。 a を6で表した式や条件はキ になるね。 (1) ア イウエオ カに当てはまる数値を答えよ。 (2) キに当てはまるものを、次の①~③のうちから一つ選べ。 b2 a= 6-4, 0 16 ①a< 62 16 6-40 a=-(6+2), (6+2), 6-2 11- 11/12 (6+2), 6-4, -2 数学- 26

回答募集中 回答数: 0
1/13