学年

教科

質問の種類

数学 高校生

解説お願いします。 右ページの『キ』が答えは⑨なのですが、解説には『キ』は答えのみしか載っていなくて、なぜ⑨になるのか分からないので、途中式含めて教えていただきたいですです。 よろしくお願いします。

(注)この科目には、選択問題があります。 数学Ⅱ, 数学 B 数学C 015779 第1問 (必答問題) (配点 15 ) (1) 次の問題Aについて考えよう。 (i) p>0のときは, 加法定理 cos(e-α)= cose cosa + sino sin α を用いると y = sin0 +pcoso= キ cos(e-α) と表すことができる。 ただし, αは 試作問題 数学Ⅱ・B・C ケ 問題A関数y = sin 8 + vscose (0≧≦)の最大値を求めよ。 sin α = COS α = 0<α< キ キ TI √3 を満たすものとする。 このとき, yは0= コ で最大値 sin/ = , COS 2 ア TT ア = 1/ り立つ。 であるから, 三角関数の合成により g=2sin(a+1/4) サをとる。 2 π y= イ | sin 0 + ア 2 (ii) p<0 のとき, yは0= で最大値 ス をとる。 T と変形できる。 よって, yは0= で最大値 I をとる。 キ ケ サ ス の解答群 (同じものを繰り返し選 ウ んでもよい。) (2)pを定数とし、次の問題Bについて考えよう。 問題B 関数 y= sin0 +pcose (O≦es/z/)の最大値を求めよ。 にく (i) p=0 のとき,yは0= で最大値 をとる。 オ (数学Ⅱ 数学 B. 数学C第1問は次ページに続く。) -2- 0 -1 1 -p P ④ 1-P 1+P ⑥-p² ⑦ p2 1-p2 1+p2 @ (1-p)² (1+p)2 コ シ の解答群 (同じものを繰り返し選んでもよい。 ) 0 ①a -3-

解決済み 回答数: 1
数学 高校生

右下の ノハ の問題って、割合が等しい という仮説だから、もしノの答えが0で 仮説は誤っていると判断されないとしても、結局 多いとは言えないんじゃないんですか?🙇🏻‍♀️💦

新課程試作問題 数学Ⅰ. 数学A (3)太郎さんは、調べた空港のうちの一つであるP空港で、利便性に関する アンケート調査が実施されていることを知った。 太郎 P空港を利用した30人に、 P空港は便利だと思うかどうかをた ずねたとき、どのくらいの人が「便利だと思う」と回答したら, P空港の利用者全体のうち便利だと思う人の方が多いとしてよい のかな。 花子 例えば、20人だったらどうかな。 二人は、30人のうち20人が 「便利だと思う」と回答した場合に, 「P空 港は便利だと思う人の方が多い」といえるかどうかを. 次の方針で考えるこ とにした。 新課程試作問題 数学Ⅰ 数学A 17 次の実験結果は、30枚の硬貨を投げる実験を1000回行ったとき、妻が 出た枚数ごとの回数の割合を示したものである。 実験結果 表の枚数 割合 0 1 2 3 4 67 8 9 13 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 表の枚数 10 11 12 14 15 16 [17] 割合 3.2% 5.8% 8.0% 11,2% 13.8% 14. 45 14. 1% 9.8% 8.8% 4.2% 0.1% 0.8% 18 19 表の枚数 割合 20 21 22 23 24 25 26 27 28 29 30 3.2% 1.4% 1.0% 0.0% 0.1% 0.0% 0.1% 0.0% 0.0% 0.0% 0.0% (%) 16 14 12 10 8 6 方針 “P空港の利用者全体のうちで 「便利だと思う」 と回答する割合と, 「便利だと思う」 と回答しない割合が等しい” という仮説をたてる。 この仮説のもとで, 30人抽出したうちの20人以上が 「便利だと思う」 と回答する確率が5%未満であれば、その仮説は誤っていると判断し、 5%以上であれば,その仮説は誤っているとは判断しない。 0123456789832 表の枚数 (枚) 実験結果を用いると, 30枚の硬貨のうち20枚以上が表となった割合 はヌ ネ%である。これを, 30人のうち20人以上が 「便利だと 思う」と回答する確率とみなし、 方針に従うと、 「便利だと思う」と回答す る割合と、 「便利だと思う」と回答しない割合が等しいという仮説は P空港は便利だと思う人の方がハ から一つずつ選べ。 については、 最も適当なものを、 次のそれぞれの解答群 の解答群 ⑩ 誤っていると判断され ①誤っているとは判断されず ハ の解答群 ⑩多いといえる ① 多いとはいえない

解決済み 回答数: 1