学年

教科

質問の種類

数学 高校生

この問題自体は理解出来ているのですが書き込みを加えたところについて質問です。 rのn乗=Pのn乗のとき奇数の場合と偶数の場合でr=Pかr=±Pか決まる、という方程式(?)が前ページに乗っていたのですが、これを使えるのが実数の範囲でみたいなことを解説動画で言っていて(理解出来... 続きを読む

本 12 等比中項 00000 実数a, b, cはこの順で等比数列になり, c, a,bの順で等差数列になる。 C この積が27であるとき、 a, b, c の値を求めよ。 等比数列をなす3つの数の表し方には,次の3通りがある。 1 初項 α, 公比として a, ar, are と表す [類 成蹊大 〕 p.427 基本事項 基本4 (公比形) ②] 中央の項α, 公比rとしてar', a, ar と表す (対称形) 3 数列 a,b,cが等比数列⇔ b=ac を利用 (平均形) 等差数列をなす3つの数の表し方は,次の3通り (p.419 参照)。 ① 公差形 a, a+d, a+2d と表す ② 対称形 a-d, a, a+d と表す ③] 平均形 26=a+c を利用 数列 a, b, c が等比数列をなすから b2=ac 429 1 章 ② 等比数列 ・ズ b=-27 実数であるから b=-3 これを①,② に代入して これらからcを消去して 左辺を因数分解して ac=9.2a=c-3 2a2+3a-9=0 (a+3)(2a-3)=0 ① <3 平均形 b=ac を利用。 C. a b c の積が-27であるから ①③ に代入して 数列 c, a, b が等差数列をなすから 2a=c+b 2 abc=-27 ... ③ αはc, bの等差中項。 463=(-3)3 実数じゃない ときは? c2a+3 を ac=9 に代入。 3 これを解いて a=-3, ac=9に代入して 2 α=-3のときc=-3 3 よって (a, b, c) = (-3, -3, -3), a=1/2 のとき c=6 別解 数列 α, b,cが等比数列をなすから,公比をと公比形 a, ar, ar" と -3. 2 すると b=ar,c=ar2 a,b,cの積が27であるから abc=-27 よって a・arar2=-27 すなわち (ar)=-27 ゆえに ar=-3 b=ar=-3であるから ac=9 ① また、数列 c, a, b が等差数列をなすから 表す。 公差0 VATE 1 検討 2 対称形を用いる。 la=br-c=br とすると by '.b·br=-27 2a=c+b よって 2a=c-3 ② ①,② から, c を消去して 2a2+3a-9=0 よって 6=-27 ゆえに b=-3 以下,上の解答と同様に計算する。

解決済み 回答数: 1
数学 高校生

ここからがよくわかりません 解説お願いします🙇‍♀️

436 重要 例題 18 等比数列と対数 00000 |初項が3, 公比が2の等比数列を {a} とする。 ただし, 10g102=0.3010, 10g103=0.4771 とする。 さ (1) 10° <a<10 を満たすnの値の範囲を求めよ。 (2)初項から第n項までの和が30000 を超える最小のnの値を求めよ。 基本11.13 指針等比数列において, 項の値が飛躍的に大きくなったり,小さくなったりして処理に 解答 るときには,対数(数学II)を用いて,項や和を考察するとよい。 (1) 10°<a<105 の各辺の 常用対数 (底が10の対数) をとる。 (2)(初項から第n項までの和) > 30000 として 常用対数を利用する。 (1)初項が3,公比が2の等比数列であるから an=3.2n-1 10° <a<10°から 103<3・2"-1<105p 各辺の常用対数をとる{nd 10g1010° 10g1032"-1 <10g10105 3<log103+(n-1)log102<5)=S. "S="+"S= |an=arn-1 |10g10103310g1010=3, log 103.27-1 =10g103+10g1027-1 10g102_{1} = logo3+(n-1)log2 5-0.4771¿=1+mds- よって ゆえに 1+ 3-10103 log102 5-10g103. < n < 1+ よって 1+ 3-0.4771 0.3010 <n<1+ すなわち 9.38・・・・・・ <n<16.02...... ( ed: nは自然数であるから 10≦x≦16 0.3010 1-(1-14) (2) 数列{an} の初項から第n項までの和は |log1010510g1010= 5 ③ ③ 3(2n-1) =3(2-1) 2-1 3(2-1)>30000 とすると 2"-1>104 ① ここで, 2">104について両辺の常用対数をとると nlog10 2>4 S=(S)◄Sn= ‚= a(r”−1) r-1 |10000=10 21=1024であるから 213-1024-8=8192 よって n> 4 log102 0.3010 = 13.2...... 12.9.2¹4-1024-16=1638 (bo) このことから,①を ゆえに,n≧14のとき2" > 10 が成り立ち, 214 は偶数で あるから 214 > 104 +1 ゆえに 214-1>104 bon 2"-1 は単調に増加する (*) から, ①を満たす最小のn の値は n=14 すんの値を調べても (*) 21が 「単調に 加する」とは,n の 大きくなると2"-10 も大きくなるという

解決済み 回答数: 1
数学 高校生

写真の半分から下の「曲線の対称移動」について質問です。点Qの座標が写真のように表せてそれをFに代入するところまでわかるのですが、代入して得られたその式がどうして対称移動して得られるGの式になるのですか。当たり前のことだと思うのですがわからないので教えていただきたいです。 雑... 続きを読む

0 1点・グラフの対称移動 ①点 (a, b) の対称移動 点 (a, b) を 軸に関して対称移動すると 軸に関して対称移動すると 点(-a, 原点に関して対称移動すると ( α, -6) 点 に移る。 b)に移る。 -b)に移る。 点(-a, したもの x軸に関して対称移動した曲線の方程式は 軸に関して対称移動した曲線の方程式は 原点に関して対称移動した曲線の方程式は ② 関数y=f(x) のグラフの対称移動 関数y=f(x) のグラフを -y=f(x) [y=-f(x)] y=f(-x) -y=f(-x) [y=-f(-x)] +7 +7 +( +7 解説 ■対称移動 3 3章 9 2次関数のグラフとその移動 1 平面上で,図形上の各点を, 直線や点に関してそれと対称な位置に移 すことを 対称移動という。 YA (-a, b) (a, b) b 2) 特に,x軸やy軸を対称の軸とする線対称な位置に移す対称移動と, 原点を対称の中心とする点対称な位置に移す対称移動によって, -a 10 a x 点 (a, b)はそれぞれ次の点に移される。 -b 違いを x軸に関して対称移動: (a,b) 軸に関して対称移動: (a,b) 原点に関して対称移動: (a,b) → (a, b) (a,b) (a, b) → (-a, b) 符号が変わる位置に注意。 ← (a, -b) - 1 - - ■曲線の対称移動 放物線のy軸に関する対称移動について、考えてみよう。 放物線F: y=ax2+bx+c を, y 軸に関して対称移動して 得られる放物線をGとする。 G上の任意の点P(x, y) を とると,この対称移動によってPに移されるF上の点は Q-x, y) である。 点 Q(-x, y) はF上にあるから y=a(-x)2+6(-x)+c すなわち y=ax2-bx+c -)S, G\P(x, Q-x, y) x軸, 原点に関する対称移動についても, 上と同様に考えられる。 すなわち, 放物線y=ax2+bx+c をx軸, y 軸, 原点に関して対称移 動して得られる放物線の方程式は,次のようになる。 x軸に関して対称移動: -y=ax2+bx+c 軸に関して対称移動: y=α(-x)^2+6(-x)+c 原点に関して対称移動:-y=α(-x)2 +6(-x)+c 以上のことは, 2次関数に限らず、一般の関数y=f(x) のグラフにつ いてもまったく同じように考えられ,上の②が成り立つ。 なお、曲線に対し,Cをx軸 (y軸)に関して対称移動し、更にy軸 (x軸)に関して対称移動した曲線をCとすると, CはCを原点に関 して対称移動したものと同じである。 キー 0 x y=ax2+bx+c で 次 のように文字をおき換 える。 Ay――y <xx < xx, y-y (x 軸対称移動) かつ (y軸対称移動) (原点対称移動)

解決済み 回答数: 1
数学 高校生

(1)の解答の"軸はy軸"という部分がわかりません。

解答 86 基本 例題 48 2次関数のグラフの位置関係 次の2次関数のグラフは, 2次関数 y= x2 のグラフをそれぞれどのよう 00000 基本例題 に平行移動したものかを答えよ。また,それぞれのグラフにおける軸と を求めよ。 (1) y=1/2x+1 (2)y=1/2(x+2)2 (3)y=1/2/(x-4)2+2 1p.83 基本事項4 基本49 CHART SOLUTION 2次関数y=a(x-p2gのグラフ y=ax2 のグラフをx軸方向に, y 軸方向にだけ平行移動 軸は直線xp, 頂点は点(b,g) (1)~(3)の関数はすべてy=1/2x-p2gの形であるから,そのグラフは, 1 2次関数 y=x2 のグラフを平行移動したグラフである。 よって,(1)~(3)において, p, g を求めればよい。 (2)x+2=x-(-2) すなわち y=1/2(x-2)とする。 (1)y軸方向に1だけ平行移動したもの。 軸は軸, 頂点は点 ( 0, 1) (2)与えられた関数の式を変形して y=1/2(x-(-2)2 よって, x軸方向に-2だけ平行移動したもの。 軸は直線x=-2, 頂点は点(-2,0) 8116 p = 0 つまり,x軸方向 には移動していない。 なお, y 軸を 「直線 x=0」とも表す。 次の2次関数 (1) y=2x2- CHART 解答 2次関 平方完 軸は 一般に すると ことに (1) I (2) (1) 2x2-6- =2{(x =2(x- よって したが になる。 ◆ 「2だけ平行移動」 ではない! 軸方向に 4, y 軸方向に2だけ平行移動したもの。 x+2=x-(-2) 軸は直線x=4, 頂点は点(42) と考える。 (1)|| y y (3) y また, (2)-xz == -{( =-( よっ した にな また, 2 x -20 2 4 14 x i PRACTICE・・・ 48 2次関数y=-3(x+2)- のグラフをx軸方向に 直線

解決済み 回答数: 1
1/15