学年

教科

質問の種類

数学 高校生

135番なんですけど、回答の5行目までは分かるのですが、それ以降何言ってるかわかりません。あと回答の黒塗りされている場所の3行目以降も何言ってるかわかりません。

134 組立除法を用いて, 次の多項式Aを多項式Bで割った商と余りを求めよ。 複数になっているも (1) A=4x3+x2+6x-5, B=x-1 (2) A=3x3-x2+3, B= x +2 (3) A=2x-7x2+8x-8, B=2x-3 =+6 と30余る。 発展問題 135 多項式P(x) を (x-1)2で割ると余りが 4x-5, x+2で割ると余りが4 ヒント である。このとき, P(x) を (x-1)(x+2) で割ったときの余りを求めよ。 133 (1) x=√2-1 から, x+1=√2 の両辺を2乗して整理すると x2+2x-1=0 3 2 134 (3) x- で割り、割り算の等式を作る。 135 P(x) を (x-1)(x+2) で割ったときの余りを、更に (x-1)2で割る。 ゆえに 商x-2x+ 1, 余り -5 135 P(x)= を x+2 erとする Q₁(x される。 ①に代 *)=(x-1 =(x- ここで,P(x) るから PC 針■■ 等式P(x) = (x-1)(x+2)Q(x) +R (x) を作る。 (R(x)は ax2+bx+c と表される) (x-1)(x+2)Q(x) は (x-1)2で割り切れるか ら, R(x) を (x-1)2で割ったときの余りは, P(x) を (x-1)2で割ったときの余り (=4x-5) と一致する。 よって R(x)=ax2+bx+c =a(x-1)2+4x-5 あとは, αの値を求める。 P(x) を (x-1)(x+2) で割ったときの商を Q(x) とする。 このときの余りは、2次以下の多項式または0で あるから, ax2+bx+c (a, b, cは定数) とおけ る。 よってP(x)=(x-1)(x+2)Q(x)+ax²+bx+c 更に,P(x) を (x-1)で割ると余りが4x-5で あるから P(x)=(x-1)(x+2)Q(x)+α(x-1)+4x-5 ...... ① と表される。 P(x) を x+2で割ると余りが-4であるから P(-2) =-4 また, ① から P(-2)=9a-13 よって 9a-13=-4 ゆえに a=1 したがって, 求める余りは (x-1)2+4x-5 すなわち x2+2x-4 別解指針■■■ 等式P(x)=(x-1)2Q(x)+4x-5を作る。 Q(x)をx+2で割ったときの余りをとする と,Q」(x)=(x+2)Q2(x) + r と表される。 よって P(x)=(x-1)^{(x+2)Q2(x)+r+4x-5 =(x-1)(x+2)Q2(x)+(x-1)'r+4x-5 ゆえに、求める余りは(x-1)+4x5 あとは, rの値を求める。 また、②から よって gr これを② P(x)=(x- =(x- ゆえに、 求め 136 (1) 移項 左辺を因数分 よって ゆえに x x (2) 左辺を因数 (3 よって 3 ゆえに (3)左辺を因 よって ゆえに x 2 (4) 左辺を因 よって = ゆえに (5) 左辺を因 よって ゆえに 137 (1) P(= P よって, P を因数分解 P(x) =0 カ したがって (2) P(x)=1

回答募集中 回答数: 0
数学 高校生

線を引いたところはなぜ普通の分散の計算じゃないんですか?そもそもuがなんなのかがよくわかりません

5-4 データの 377 うえる。 かといって, お小遣い 出題度 平均年齢が30 になった。 次 分散が3で というのは 人数が多い 11 (1)は(和)=(平均値)×(すべての度数)で計算すればいいんですよ ねこ そうだね。 308 基本例 例題 186 仮平均の利用 次の変量xのデータについて, 以下の問いに答えよ。 726,814,798,750,742,766,734,702 0000 (1) y=x-750 とおくことにより, 変量xのデータの平均値x を求めよ。 x-750 (2) u= 8 とおくことにより,変量xのデータの分散を求めよ。 (1)のデータの平均値を とすると, y=x-750 すなわち x=y+750である よって まずyを求める。 (2)x, uのデータの分散をそれぞれ sx2, Su² とすると, sx = 8's² である。よって、 ず変量xの各値に対応する変量uの値を求め, su2 を計算する。 (1) yのデータの平均値をyとすると y= | | (- {(-24)+64+48+0+(-8)+16+(-16)+(-48)}=4 (1)x1(726+..+ x=1/08 (726 としても求められるが 考事項 偏差値 までに学んだ平均値, 標準偏差を用いて求められる健 で、もう一方 解答 ゆえに x=y+750=754 x-750 (2) u= 8 とおくと, u, u2 の値は次のようになる。 答の方が計算がらく x 726 814 798 750 742 766 734 702 計 y -24 64 48 0 -8 16 - 16 -48 32 U -3 8 6 0 -1 2 -2 -6 4 u² 9 64 36 0 1 4 4 36 154 よって, uのデータの分散は PS (uのデータの分散) = 8 154-(1)-76-19 (u2のデータの平均 = (uのデータの平均 ゆえに、xのデータの分散は 値の 82×19=1216 sx=8²² があげられる。 複数教科の試験を受けた場合,平均 が各教科の実力の差を見極めることは難しい。粘 義される。 各教科の実力の差を比較しやすい。 偏差値は、偏差 データの変量xに対し,xの平均値をx ×10 によって得られる y = 50+ x-x Sx 偏差値の平均値は 50,標準偏差は 10 である 入学共通テストや, その前身である大学入試 偏差も発表されている。 それらの値を利用 ] ある生徒の大学入試センター試験の国語 通りであった。 大学入試センター試験得点 国語 (200点) 数学ⅠA (100点) 英語 (200点) 15 8 3教科の偏差値を求めると 150-98.67 国語 50+ 26.83 85-62.08 数学 50+ 21.85 170-118. とも C 均という。 参考上の例題 (1) の 「750」 のように,平均値の計算を簡u=x-x -の x を仮 単にするためにとった値のことを仮平均という。仮平 均を自分で設定する場合, 計算がらくになるようなもの を選ぶ。 具体的には,各データとの差が小さくなる値 (平均値に近いと予想される値)をとるとよい。 英語 50+ 41.06 上の計算から, 得点率で比較す が、偏差値で比較すると, 国語 偏差値を用いることで自分の相対位 正規分布 (詳しくは数学Bで学習) 次の表のようになることが知られて 偏差値 75 70 65

回答募集中 回答数: 0
数学 高校生

問題の下の解説の「x,yの2次式の因数分解」 のところで、展開をしなくていいのは、 展開した式を入れ替えても答えは同じっていう 性質があるからですか?

2 因数分解/2次式 つぎの式を因数分解せよ. (酪農学園大酪農, 環境) (北海学園大工) (東北学院大・文系) (1) (a-b+c-1) (a-1)-bc (2) 4.2-13zy+10y2 +18æ-27g+18 (3)(x+2y) (æ-y)+3y-1 因数分解では最低次の文字について整理する 2文字以上が現れる式の因数分解の原則は,最低次 その文字 (複数あるときはどれか1つの文字) について整理することである. 一般に,次数の低い式の方 が因数分解しやすい. 仕 解答 xyの2次式の因数分解 原則に従えば,xか」について整理するところであるが,(3)において (x+2y) (x-y) を展開して整理するのはソンである. 「x+2y」 「x-y」 を用いて解答のように「たす きがけ」をすればよい。 (2)も, x,yの2次式の部分を因数分解すれば同様にできる(別解) 慣習 因数分解せよ,という問題では,特に指示がない限り, 係数が有理数の範囲で因数分解する. (2) (3) ((+23)(x-3) + 33-17 (1) まずcについて整理することにより, 与式= {c(a-1)+(a-b-1) (a-1)}-bc ←与式はαについては2次だが, b やcについては1次. =(a-b-1)c+(a-b-1) (a-1)=(a-b-1)(a+c-1) (2) まずェについて整理することにより, (-a+b+1)(-a-c+Uod 与式=42-(13y-18)x + (10y2-27y+18) =4x²-(13y-18)x+(2y=3) (5y=6)... x= ={x-(2y-3)}{4m-(5y-6)} 2 × ①+56 7-2 →27 ←1 -(2y-3) × -(13y-18) =(x-2y+3)(4x-5y+6) 14 -(5y-6) 注 ① におけるたすきがけで, 試行錯誤するのを避けるためには, ①= {ar-(2y-3)}{bx-(5y-6)} とおき, 展開して係数比較すればよい. æの係数は (yは定数と見る), -{(5a+26)y- (6α+36)} となり, ー (13y-18) と一致するので 5α+26=13,6a+36=18. これを解いて α= 1, 6=4となる. (3) 与式={(x+2y)-1}{(x-y)+1} てんか =(x+2y-1)(x-y+1) 【別解】 (2) [x,yの2次式の部分をまず因数分解して, (3) と同様に解くと] であるから, 4.2-13ry+10y2=(x-2y) (4π-5y) 与式= (x-2y) (4-5y) + (18-27y) +18 このときの係数も一致する. x+2yx-13y x-y →-13 12--13 0 4 -5 ={(x-2y)+3}{(4x-5y)+6} =(x-2y+3)(4x-5y+6) 2 演習題(解答はp.22) (1) (ry) (x+y-z (z+2y) を因数分解せよ. (2) 3a+26+αb +6 を因数分解すると d)( x-2y 3 4x-5y 6 × -18x-27y 13) (48 (北海道薬大) である.また, (1) である. (3)は,例題 (2) と同様 (岐阜聖徳学園大) に2通りのやり方があ (静岡産大) . ry+xz+y2+yz+3 +5y+2z+6 を因数分解すると (3) 8-18y2+10x+21y-3 を因数分解せよ.

回答募集中 回答数: 0
数学 高校生

数学1Aです! (タ)の求め方がわかりません。図の書き方が分からず悩んでいます。特に蛍光ペンのところがわからないです…どなたかよろしくお願いします🙇‍♀️

数学Ⅰ (2)太郎さんの住んでいる街にはK電鉄のA 駅, B 駅, C駅があり, A駅とB駅の 間の線路はまっすぐである。 「STATION A 駅 3駅の位置関係は A駅とB駅の間の直線距離が13km 駅 数学Ⅰ (i) 太郎さんはスマートフォンを持って電車に乗り, A駅からB駅まで移動した。 出発時にアプリに表示されていたのはA駅のみであったが, 出発からちょうど 分後にアプリに ソ ソ の解答群 STATION 10000 +++ B 駅 A駅とB駅の2駅のみが表示された ① A駅とC駅の2駅のみが表示された ② A駅とB駅とC駅の3駅が表示された (i) 1年後にC駅が移転し、 移転後の3駅の位置関係は B駅とC駅の間の直線距離が 5km C駅とA駅の間の直線距離が12km である。 また, 近隣に他の駅はない。 太郎さんのスマートフォンには最寄り駅が表示されるアプリが入っている。 ただ し,最寄り駅とは,スマートフォンからの距離が最も近い駅のことである。 そのア プリでは, 最寄り駅が複数ある場合はすべての駅が同時に表示される仕様になって いる。 以下では,駅および太郎さんがスマートフォンを持って乗っている電車は同じ平 面上の点とみなす。 また, A駅からB駅まで運行する電車はA駅とB駅を結ぶ線分上を動くものと し, その速度は加速・減速を無視し, つねに時速78km であるとする。 A駅とB駅の間の直線距離が13km B駅とC駅の間の直線距離が 5km C駅とA駅の間の直線距離が10km となった。 C駅の移転後に, 太郎さんはスマートフォンを持って電車に乗り, A駅からB 駅まで移動した。 このとき, アプリに複数の駅が最初に表示されるのは,出発か らおよそ タ 後である。 その後、 再び複数の駅が表示されるのは,B駅に到 着するおよそ チ 前である。 タ の解答群 3分46秒 3分56秒 ② 4分6秒 ③ 4分16秒 C駅 12 km 5km チ の解答群 AR 13km B 駅 ⑩ 2分40秒 ① 2分55秒 ②3分10秒 ③3分25秒 (数学Ⅰ第2問は次ページに続く。) 31

回答募集中 回答数: 0
数学 高校生

(2)の問題で平方完成をする所までできるのですが、 最小値の求め方とその時のaの値の求め方が分からないです💦

令和6年度 夏期補習 数学(標準) チャレンジ演習② 次の問題について, 太郎さんと花子さんが会話している。 会話文を読んで以下の問いに答 えよ。 [問題] 実数 αに対し, f(x)=x2-2(3a²+5a)x+18a +30a' + 49a2+16 とおく。 αが実数全体を動くとき 2次関数y=f(x) のグラフの頂点のy座標の最小値 を求めよ。 (1) 太郎: 計算すると ア 2+ イ ウ a, 4 la^+ エオ a2+カキが頂点 の座標だとわかったよ。 花子: 頂点の座標が4次式だよ。 どうやって最小値を求めればいいんだろう。 太郎: t=ax とおけば頂点のy座標は2次式になるから,解けるはずだよ。 花子:本当だ。 ウエオ+ カキについて考えればいいんだね。 太郎: 平方完成してみると最小値は0になる(A)ことが分かるね。 花子 : 私は違う答えになったけど・・・。 ~ カキに当てはまる数を答えよ。 (2) 太郎さんの下線部(A) の発言は,誤りである。 正しい最小値はクケであり,その ときのαの値は コ である。 (3)(i) 次の①~③の関数のうち, 下線部(X)のように置きかえることで 太郎さん・花子さんと同様の方法で頂点のy座標をtの整式で表せるものを1つ選 なお,そのような関数は複数あるが解答は1つでよい。 サ © y= −x²+2a²x−4a²+8 ① y=2x2+8ax+5a+2a +4 ② y=x2-2ax+3a-a3+2 ③ y=x2-2ax-a-a2-3 (ii) サで選んだものについて、頂点のy座標の最小値を次の①~⑦のうち 1つ選べ。ただし,最小値がない場合は ⑦を選べ。 0 0 0 1 ② 2 ②③ 3 4465 60

回答募集中 回答数: 0
数学 高校生

数2の質問です! 172のsinθ、cosθ=0 の時に どのようにしてといているのかを 分かりやすく説明してほしいです!! よろしくおねがいします🙇🏻‍♀️՞

テーマ 40円 千乃の 円奴の他 = 1/3 のとき, cos2a, sin a cos- <α<л, sinα= 2 え方 解答 の値を求めよ。 (4) cos2α を求めるには, sina, cosαのいずれかの値がわかればよい。 sin 2 を求めるには, sinα, cosαの両方の値が必要である。 2 cos2a=1-2sinq=1-2×(1/3) - 7 25 <α <πであるから cosa<0 1- 3-5 2 よって cosα=-√1-sin'α=- したがって sin2a=2sinacosa=2x- 2× ×(-3)=-24 25 sin a 2 1/4であるから よって sin√√ 13 172(1) 左辺を変形すると 整理すると よって sincos したがって、ソは sin >0 5 3" =1/3で最大値2.x 2 √13 をとる。 あるから Ry=2sin(x+1/x) (0≦x y=2sinx (0≦x<2m) gだけ平行移動し 下の図の実線部分のよ sin sin 0 (2cos 0-1)=0 a COS 2. 2 1+cosa 2 5 a <であるから COS ->0 4 2 2 よってco8/1/2=1/15 √5 a COS 12 □ 練習 171 0<a< で, sina=- 13 そのとき,次の値を求めよ。 (1) cos 2a (2) sin2a a (3) cos (4) sin 2 答 第4章:三角関数 sin0=0 または cost=- 002 のとき,! sin0=0から - coso=1から 10=0,π y1 12 Jar + 0 = 5 2 3' 3 6 5 したがって 0=0, 3π, (2) 左辺を変形すると 74 2sinx+3cos 整理すると 左辺を因数分解すると (2cos20-1)-3cos0-1 = 0 sin a= 2cos20-3cos 0-2=0 ただし 3 √13 (cos 0-2)(2cos 0 +1)=0 0≦x<2 より 72 cos であるから よって cose-2 よって 2cos +1=0 したがって 166 すなわち cos 0=-- 175(1) 左辺 応用 2 10号 2-3 テーマ 78 2倍角の公式と方程式 0≦02 のとき, 方程式 sin20=√3cose を解け。 考え方 2倍角の公式を利用して, 方程式を AB=0 の形にする。 解答 左辺を変形すると 173 √ 2sincos0=√3cose ←共通の式 cosが現れる。 から 整理すると cos (2sin0-√3)=0 よって cos0=0または sin0= 2 002のとき, から cos00から π 0=- 2'2 したがって 0=- π π, 3 2' [練習 172 3|22|3 22 √ π 2 ・π sin0= -から=1 2 3' 3" よって 32 笑 πC 002のとき, 次の方程式を解け。 (1) sin20=sin0 (2) cos 20-3cos0-1=0 002の範囲で解くと10 5 x+1)である −V3sin x+cosx=2sin x+ y=2sinx+ 51-1 5 17 xx+1である 5 -15 sin(x+7) Sl -2≤y≤2 また,sin(x+1)--1のとき 5 3 T= TC ゆえに x=ga sin(x+1)=1のとき 0nie 5 +5 x+ = 6 5 ゆえに x=g 複数の上 よって 0≤x< この範 した (2) 2

回答募集中 回答数: 0
1/10