学年

教科

質問の種類

数学 高校生

解答では、それぞれの長さを変数でおいてから、相似比で1変数に直していますが、別解として、θを設定して1変数関数として求めることは出来ますか?できれば答えまで示して欲しいです

ENGRENS. 4K 89 重要 例題 104 最大・最小の応用問題 (2) 題材は空間の図形 ①①①① 半径1の球に,側面と底面で外接する直円錐を考える。この直円錐の体積が最 基本 103 小となるとき, 底面の半径と高さの比を求めよ。 指針立体の問題は,断面で考える。→ここでは,直円錐の頂点と底面の円の中心を通る平 面で切った 断面図 をかく。 問題解決の手順は前ページ同様 ① 変数と変域を決める。 2 量(ここでは体積) を で決めた 変数で表す。 3 体積が最小となる場合を調べる (導関数を利用)。 であるが,この問題では体積を直ちに1つの文字で表すことは難しい。 そこで,わか らないものはとにかく文字を使って表し, 条件から文字を減らしていく方針で進める。 50-0 直円錐の高さをx, 底面の半径を r, 解答 体積をVとすると, x2 であり A TATR)S (高さ)> (球の半径) x2 から。 7= ...... ① x 3 D 球の中心を0として,直円錐をその 頂点と底面の円の中心を通る平面で 切ったとき,切り口の三角形ABC, および球と △ABC との接点 D, E を 右の図のように定める。 (Onie-nia +(1+8203)8 200/ △ABE∽△AOD (*) であるから AE: AD=BE:OD B --E C (*) △ABE と △AODで ∠AEB= ∠ADO=90° ∠BAE = ∠OAD (共通) 26 すなわち x:√(x-1)2-12=r:1 (1+0 2000 2001 0200S) (1+0 200) 対応する辺の比は等しい。 AD は, 三平方の定理 を利用して求める。 x よって r= 2) √x²-2x ②①に代入して V=π 2 x π x •x= 3 dV π2x (x-2) -x2・1 x-2 πx(x-4) • 3(x-2)2 よって dx = 17 3 (x-2)2 dv = 0 とすると, x>2であるから x=4 dx x>2のときVの増減表は右のようになり、 体積 V はx=4のとき最小となる。 このとき, ②から r=√2 ゆえに, 求める底面の半径と高さの比は r:x=√2:4 Vをx (1変数) の式に 直す。 () u'v-uv v.2 x 2 4 dv 4 20 dx V 極小 +

解決済み 回答数: 1
数学 高校生

なぜ図1のような図が出てきたのかわからないです。半径1の球が三角形の円周上を回るのに半球の図が出てきたのが何故なのか教えて頂きたいです。

問題を 空間内に1辺の長さが4の正三角形があり,半径1の球の中心が この三角形の周上を一周するとき,この球が通過する部分の体積を求 動かす」とい めよ. [横浜国立大〕 《解答》 正三角形を含む平面に垂直で,この平面が x = 0 となるよう にx軸を定める. 平面 x = t (−1 ≦t≦1) による球の切り口は、半径 √1-12 (=r)の円である(図1).題意の立体 D のxによる切り口 D は、半径rの円の中心が平面x=t内で一辺の長さが4の正三角形の辺上を 一周する (図2) ときの円の通過領域に等しい (図3). これを扇形3個,長方 形3個、正三角形から内側の正三角形を除いた部分に分割する ここで1辺 の長さが4の正三角形の内接円の半径R は, 面積に注目すると 1.42 sin 60° = 2 2 11.R.(4+4+4) :: R = 2√3 3 2 の正三角形との相似比は (R-r): Rであり,面積は(R-F) 3 倍になる。 よって、図4の斜線部の面積は 図4の内側の正三角形の内接円の半径は R-rになるので, 1辺の長さが4 • 1 .42 sin 60° {1 - (R=r)²)} = 12r - 3√31 12r-3√3r2 2 だから、切り口 D の面積は r2m +4.r×3 +12r - 3√3r2 = 24+ (π-3√3) 2 = 24√1-12 + (π-3√3)(1-12) したがって、求める体積は dt 2/" (24√1-12 + (x-3√3×1-1³) 41 = = 48.77 +2(−3√3). 1/1 4 407-4√3 〔第1項の積分は半径1の四分円の面積

未解決 回答数: 1
数学 高校生

(2)について質問です。 (2)の解答の5、6行目で<KDL= 30°+ 30°= 60°だと分かると、「△DKLは正三角形である」となるのはなぜですか?🙇🏻‍♀️

57 △ABC は 1辺の長さが1である正三角形で,辺BCを1:2に内分する点をD とする。 △ABCの外接円と ADの延長が交わる点をE, 点Dから線分 BE, EC に下ろした垂線をそれぞれDK, DLとする。 このとき, 次の問に答えよ。 (1) 線分 DE の長さを求めよ。 (2) 面積比 △ABC △DKL を求めよ。 [解] (1) AD=x, DE =y とおく。 △ABC は正三角形であるから 弧 AB の円周角であるから よって ∠ABD= ∠AEB また ∠BAD= ∠EAB よって AABD AAEB したがって AB:AE=AD:AB (東京慈恵会医科大) 15分 ①②より x>0*5 x = √7 E 2:√7-2√7 C ∠ABD = 60° ∠AEB= ∠ACB=60° したがって y= 2√7 すなわち DE = 21 (2)(1)より ∠AEB=60° 弧 AC の円周角であるから ∠AEC= ∠ABC=60° よって DK=DL= √3 √21 -y= 2 21 1:(x+y)=x:1 x'+xy=1 点Dは辺BCを1:2に内分するから BD=131 2 CD= 弧 AC の円周角であるから ∠ABD= ∠CED ∠BAD=∠ECD 弧 BE の円周角であるから AD:CD=BD:ED よって AABDACED って x: 1 : y ∠EDK= ∠EDL=30° であるから <KDL = 30° + 30° = 60° よって, ADKLは正三角形である。 したがって, △ABC∽△DKL であり, 相似比は √21 1: 21 =√21:1 面積比は AABC:ADKL=21:1 xy= 2-9

解決済み 回答数: 1
1/29