学年

教科

質問の種類

数学 高校生

(2)の問題がわかりません。 散布図は、1に近いので正の相関は、わかりますが、図の書き方がわかりません。なので➃か⑥で迷いました。 あと、ケの範囲はどう求めますでしょうか? 教えていただきたいです。🙇‍♀️

9 8/6/ Ex 14 データの相関関係 男女5人ずつが, 国語と数学のテ 制限時間 15分 男子 女子 ストを受けた。 国語 45 37 39 31 23 33 35 46 41 29 (1) 男子の国語の点数の平均値は 35点 分散は56 であり, 男子 の数学の点数の平均値は アイ点,分散はウエである。 また, 男子の国語と数学の 点数の相関係数は オカキである。 ただし, 小数第3位を四捨五入して小数第2位 まで答えよ。 数学 34 32 31 30 23 25 32 38 40 25 (2)男女10人の国語の点数をx, 数学の点数をyとし,x,yの相関係数をrとする。 x, yの散布図として正しいものは ク |,rの範囲として正しいものは ケ である。 ク ケ には,当てはまるものを,下の①~⑥のうちから1つずつ選べ。 -0.9 <r <-0.7 ① -0.5 <r <-0.3 ② 0.3 <r<0.5 0.7 <r < 0.9 ④ 45 ⑤ 45 ⑥ 45 40 35 40 40 8.0 35 0 35 y 30 25 + • 20 y 30 30 25 25 • 20 20 20 25 30 35 40 45 50 x 20 25 30 35 40 45 50 x 20 25 30 35 40 45 50 x 解答 (1) 数学の点数の平均点は (34+32 +31 +30 +23) アイ [30] 基本 14-1 5 よって、 数学の点数の分散は -{(34-30)'+(32-30)'+(31-30)'+(30-30)+(23-30)^} 5 1 70 ウエ (16+4+1+0+49)= = 5 5 国語と数学の点数の共分散は 1/ -{(45-35)(34-30)+(37-35)(32-30)+(39-35)(31-30) +(31-35)(30-30)+(23-35)(23-30)} 132 = ~ ( 40+4+4+0+84) = -=26.4 1に近い 5 5 26.4 26.4 オカキ ゆえに、相関係数は =0.942≒ +0.94 ○ 基本 14-2 √56×√14 28 (2)正しい散布図は’④ 更に、この散布図から, xとyの間には強い正の相関があること が読みとれる。 したがって, rの範囲として正しいものは ○基本 14-3 解法の思考回路 数学の点数の平均値,分 散を求める。 相関係数を求めるために, 国語と数学の点数の共分 散を求める。 散布図の特徴から, 相関 係数の値の範囲を絞りこ む。 データの分析

解決済み 回答数: 1
数学 高校生

どうして定義の式からことイメージ図が出てくるのか分かりません。教えていただきたいです🙇‍♀️🙇‍

226 第8章 データの分析 基礎問 138 偏差値 ある会社の入社試験で,国語と数学の試験が行われた. 国語の平均値を,標準偏差を S, 数学の平均値をy,標準偏 差をsy とするとき, x=62, Sx=15, y=55, sy=20であった. (1) 受験者Aは,国語, 数学ともに80点をとった. それぞれの科 目の偏差値を求めよ. ただし,平均値が m, 標準偏差が0のデータに対して,変量 x-mx10+50で求められる値である. O ェの偏差値は (2)2人の受験者 A, B に対して, 得点は右表の ようになった。 科目間の難易度を反映させるた めに, 得点の合計ではなく、 偏差値の合計で合 否を決めることになった. A,Bのどちらが上位の成績といえるか. A B 国語 80 74 数学 80 87 合計160 161 受験生には、切っても切れない数値である偏差値がテーマです。 |精講 受験生でない人でも,この単語を聞いたことがないという人はいな いと思いますが,どうやって求めているのか,どんな意味をもって いるのかを知らないで,「偏差値が65 だから・・・」 などという会話を耳にします。 また,世間では,偏差値は悪者のようにいわれているという側面も否定でき ません。 入試ではこの問題のように定義の式が与えられるので,覚えておく必 要はありませんが、せめて「異質な数値に対する評価方法の1つ」であること は知っておいてほしいものです。 定義の式から得られる偏差値のイメージは下図のようなものです. 48 49 50 51 52 0 m x2 m-. m m+ 10 10 # m+ x2 10 62 10 平均点 10

解決済み 回答数: 1
1/40