学年

教科

質問の種類

数学 高校生

カッコアの問題でθ=α-βとして解答してると思うんですが、なぜマイナスなんですか?α+βでは間違いなのでしょうか。

1 直線/なす角 2 直線のなす角 2直線のなす角は,交点のまわりに角を 集め、回転角でとらえよう. 傾き m の直線から傾き m2の直 線に反時計回りに測った角はtanの加法定理でとらえられる. 図2において, 0=β-αであるから, (ア) 2直線æ-3y+5=0, x+2y+4=0 のなす角 0 2 100ses)を求めよ. (高知工科大-後 (0 (イ) 原点を通り,直線x+2y4=0と45°の角をなす直線の方程式を求めよ. 傾きは tan O 直線と軸の正方向とのなす角 (反時計 回りに測った回転角) を0とすると, 1の傾きは tan0 (ただし, 0≠90° である. (高崎経済大 (=tana) 図1 図2 Ay 傾きm2(=tanβ) 傾き m 傾きtane 84 O a B 軸に平行 tanβ-tana tan0=tan(β-α)= m2-m1 1+tan βtana 1+m2m1 また,m と 0からm2をとらえることもできて, m2=tan (α+0)=- 1-m₁tan なる.ただし直線がy軸に平行なときや, 2直線が垂直 (mm2=1) のときは使えないことに注意. 13円 8 tana +tano 1-tana tan m1 +tan と 解答 曲 To (ア) 右図のように,回転角α,βを定めると tana-tanβ tan0=tan (α-β)= 1+tanatan B 565-6 12 1 3 1+ 13 1/ 1 - 12 =1 0 =π/4 (イ) x軸の正方向から19 a B0 X y=-- 12 x-2 x-3y+5=0のとき, 5 y x+ x+2y+4=0のとき, y=- X- 2 tana= 1 3' tanß=-1 2

未解決 回答数: 1
数学 高校生

相加・相乗平均を使って範囲を調べるのはなんでですか?範囲を求める問題って沢山あると思うんですけど、どうしたら範囲を調べるっていう発想になりますか。

関数 y=4x+1-2x+2+2 (x≦2) の最大値と最小値を求めよ。 00000 / 関数y=6 (2x+2-x)-2(4*+4¯*) について, 2*+2=t とおくとき,yをt を用いて表せ。また,yの最大値を求めよ。 指針 (1)おき換えを利用。2*=t とおくと,yはtの2次式になるから 2次式は基本形α(tp)+αに直すで解決! なお、変数のおき換えは,そのとりうる値の範囲に要注意。 (2)まず,X2+Y2=(X+Y) -2XY を利用して, 4+4 を表す。 ・基本 173 で表すとの2次式になる。なお,t=2*+2* の範囲を調べるには, 20, 2-x>0 に対し, 積 2*2=1 (一定) であるから,(相加平均) ≧ (相乗平均)が利用で きる。 (1) 2^=t とおくと t>0x≦2 であるから 0<t≦2|pg⇔2°≦2° 解答 したがって <t≦4 y を tの式で表すと (1) ① ケ y=4(2")"-4•2"+2=4f-4t+2=4(t-12) 2+1 ①の範囲において, y は t=4で最大, t=1/2で最小とな gol y 50 最大 る。 t=4のとき 2=4 ゆえに x=2 のとき 2x= 1 10 2 10of ゆえに [豆] (1/2) 4 よってx=2のとき最大値50, x=-1のとき最小値1 (2)4*+4=(2x)+(2-x)=(2' +2'*)'-2・2・2x=-2 2F•2-1=2°=1 ゆえに y=6t-2(t2-2)=-2t2+6t+4 ...... 20, 2x 0 であるから,(相加平均) ≧ (相乗平均)よ 相加平均と相乗平均の関係 り(*)2+2222×2 すなわち t≧2…② a>0, 6>0のとき a+b √√ab 2 成り立つ。 ここで,等号は 2*=2x すな わちxxからx=0のときで -lo こ YA m17 最大 2 8 り立つ。) (等号はa=bのとき成 ①から y=-2(1-2/21)2+1/27 4 ② の範囲において,yはt=2 のとき最大値8 をとる。 x=0のとき最大値 8 32 3 2 t t=2となるのは, (*)で 等号が成り立つときであ る。 ( 5 5章 29 2 指数関数

未解決 回答数: 2
数学 高校生

解法は大体あっていたのですが、回答5〜7行目においてxの範囲を出す理由がわかりません。回答よろしくお願いします。

基本 例題 118 2次不等式と文章題 0000 立方体Aがある。 A を縦に1cm縮め, 横に2cm縮め,高さを4cm伸ばし直 方体Bを作る。 また, A を縦に1cm伸ばし, 横に2cm 伸ばし, 高さを2cm 縮 めた直方体を作る。 Aの体積が,Bの体積より大きいがCの体積よりは大き くならないとき,Aの1辺の長さの範囲を求めよ。 指針 ①大小関係を見つけて不等式で表す 不等式の文章題では,特に,次のことがポイントになる。 ②解の検討 基本117 まず、立方体Aの1辺の長さをxcmとして(変数の選定),直方体B,Cの辺の長さ それぞれxで表す。そして、体積に関する条件から不等式を作る。 199 なお、xの変域に注意。 CHART 文章題題意を式に表す 表しやすいように変数を選ぶ 変域に注意 3 3章 立方体Aの1辺の長さをxcmとする。 2 解答 直方体B, 直方体Cの縦, 横, 高さはそれぞれ 直方体B: (x-1)cm, 不 (x-2)cm, (x+4)cm 直方体C: (x+1)cm, (x+2)cm, (x-2) cm 各立体の辺の長さは正で,各辺の中で最も短いものは 02 (8-5)( (x-2)cm であるから x-2>0 すなわち x 2. ① ...... (Bの体積) < (Aの体積) ≧ (Cの体積)の条件から (x-1)(x-2)(x+4)<x≦(x+1)(x+2)(x-2) x3+x2-10x+8<x≦x'+x-4-4... (*) ゆえに よって x²-10x+8<0. ... ****** xの変域を調べる。 2005,0 Jeb PはQより大きくない を不等式で表すと P≦Q 等号がつくことに注意。 ②かつx-4x-4≧0 ③ (*)はどの項が消えて x²-10x+8=0 の解は x=5±√17 ゆえに、②の解は 5-√17 <x<5+ √17 x2-4x4=0の解は よって、③の解は ④ x=2±2√2 x²-10x+8<0≦x2-4x-4 と同じ。 また, P<Q P<Q≦R⇔ Q≤R x≦2-2√22+2√2≦x ①, ④ ⑤の共通範囲は 2+2√2≦x<5 + √17 以上から、立方体Aの1辺の長さは ...... ⑤ 2-2√2 2 2+2√2 5+√17 x 2+2√2cm以上5+√17cm 未満 5-√17

未解決 回答数: 1
数学 高校生

数Aです (3)の3の4乗通りの意味が納得できないので、教えてください

364 基本 21 組分けの問題 (1) ... 重複順列 47 6枚のカード1,2,3,4,5,6 がある。 00000 (1) 6枚のカードを組Aと組Bに分ける方法は何通りあるか。ただし、各種 少なくとも1枚は入るものとする。 (2) 6枚のカードを2組に分ける方法は何通りあるか。 6枚のカードを区別できない3個の箱に分けるとき、 カード 1.2を 箱に入れる方法は何通りあるか。 ただし, 空の箱はないものとする。 指針 (1)6枚のカードおのおのの分け方は, A. Bの2通り。 - 重複順列で 通り ただし、どちらの組にも1枚は入れるから。 全部を AまたはBに入れる場合を除くために (2) (1) A,Bの区別をなくすために (3) A. B. C とし、問題の条件を表に示すと、 右のようになる。 よって、次のように計算する。 (34.56. B. Cに分ける) カー 3.4.5.6から少なくとも Cが空箱になる=3. 4. 5. 6をAとBのみに入れる) CHART 組分けの問題 個の組と組の区別の有無に注意 (1)6枚のカードを, A. B2つの組のどちらかに入れる方 解答 法は 264通り このうち, A. Bの一方だけに入れる方法は2通り よって、八組Bに分ける方法は 61-262(通り) (2)(1) A,Bの区別をなくして 62÷2=31(通り) -(A, B (3) カード 1,カード2が入る箱を、それぞれA,Bとし、 残りの箱をCとする。 A,B,Cの3個の箱のどれかにカード3. 4. 5. 6を入 れる方法は が通り が入 入る 意 このうち、Cには1枚も入れない方法はり したがって 3-2'=81-16=65 (通り) できるように C2224 A, B02 2570 0 21 (1)7人を2つの部屋A, Bに分けるとき。 どの部屋も1人以上になる分け方

未解決 回答数: 1
1/247