学年

教科

質問の種類

数学 高校生

数1の問題です。マーク箇所がどこからでてきたか、なぜそういう式なのか分かりません。 教えてください🙇‍♀️🙏

25 18 19 2次関数の最小値と相加・相乗平均 絶対暗記問題 18 難易度 大 CHECK 7 CHECK 2 CHECK | 2次関数y=f(x)=-ax2+bx+c (a≠0) は, 2点(1,-3), (513) 通る。 以下の問いに答えよ。 (1) b, c を a を用いて表せ。 (2) 2次関数y=f(x)の頂点の座標をαで表せ。 (3)αが正の値をとって変化するとき, 頂点のy座標の最小値を求めよ。 ヒント! y=f(x) が2点 (1,3), (5,13) を通るので,f(1)=-3, f (5) = 13 だね。(2)y=f(x) を標準形にする。 (3)相加・相乗平均の不等式を使う。 解答&解説 (1)y=f(x)=-ax2+bx+cは,2点(1,-3), (5,13) を通るので、 f(1) = - a+b+c = -3 ......① f(5) = -25a+5b+c = 13 ......2 ①-②より,24a-4b=-16,6a-b=-4 ∴b = 6a + 4 ... ③…(答 ③①に代入して,-a+6a+4+c = -3:c=-5a-7.・・④・・・(答) =-ax (2)(1) より,y=ax2+(6a+4)x-5a-7 -9/x²- - 6a+4 a 3a+2 x+ -5a-7 (3a+2)^ a a 「2で割って2乗 3a+2 4a²+5a+4 ax- + a a 9a²+12a+4 a y=f(x)の頂点の座標は 3a+2 a 4a²+5a+4 a 4a²+5a+4 3) 頂点のy座標を変形すると, a = 4√(a + 1) + 5 ここで,a>0のとき, 1>0よって,相加平均と相乗平均の不等式より、 4(a + 1 ) + 5 ≥ 4 · 2 √ d. 17 +5=13 等号成立条件 : a=1 a a = 1) よって、頂点のy座標の最小値は13である。 相加・相乗平均の不等式: p>0, g>0のとき,p+q≧2vpg (等号成立条件:p=q1

未解決 回答数: 0
数学 高校生

(1)のとき、イコール記号を切り離して3つの方程式を答えとしても正解ですか?

ペー 3空間のベクトルの応用 例題 C1.66 直線の方程式 (1) (315) C1-129 次の条件を満たす直線の方程式を求めよ. (2) 2点A(2,2,-3), B(5, 2, 2) を通る直線 (1) 点A(0, 1, -2) を通り, d=1,2,3) 平行な直線 (3)点A(2,1,0) を通り, d=(0, 0, -1) に平行な直線 考え方 直線の式を求める際は, 「解答 ①p=a+td (1点A(a) を通り,方向ベクトルの直線) ②p=a+t(b-a) (2点A(a),B(b)を通る直線) を利用する.(②で b-a=d とおくと, ①と同じ式になる.) (1)A(7) とし,求める直線上の点をP(D) とすると, p=a+td (tは実数) だから,P(x,y,z) とすると, (x,y,z) = 0,1,-2)+t(1,2,3) **** x= =(t,1+2t,-2-3t) (tは実数) よって、求める方程式は, tを消去して y-1_z+2 2 (2)A(2,2,-3) を通り,方向ベクトルが AB= (3,0.5)の直線だから (x,y,z) = (2,2,-3)+t(305) =(2+3t,2,-3+5t) (tは実数) よって、求める方程式は を消去して, x-2_z+3 35,y=2平 (3)点A(2,1,0)を通り, 方向ベクトルが (0, 0, -1) の直線だから分 4-1-2-1 (x,y,z)=(2,1,0)+t(0,0, -1) (2,1,-t(tは実数) よって、求める方程式は, x=2,y=1 炭火&取沢 標準形という. AB =(5-2, 2-2, 2+3) =(3, 0, 5) より, 点Aを通り, AB に平行な直線と 考えればよい. 1 y 2人 xx zは任意の実数 第4章 Focus 空間における直線は, ベクトル方程式p=a+td (tは実数) を 用いて表す 注)(2)では,方向ベクトルの成分は0より、この直線上の点のy座標はつねに2(一定値) である.(3)では,方向ベクトルのxy成分はともに0より, この直線上の点のxy 座標はつねに x=2,y=1(一定値)であり、座標は任意の実数値をとる。 ●から成っている。 練習 次の条件を満たす直線の方程式を求めよ. C1.66 (1) 点A(2,-1, 3) を通り (2,16)に平行な直線 ** (2) 2点A(1, 2, 3), B(4, 3, -1) を通る直線 - (3) 点A(7, 2, 8) を通り、x軸に平行な直線 B1 58.13 B2 C1 C2

未解決 回答数: 1
数学 高校生

数学の軌跡で逆にという文章を付けるのはどういう時なのですか? 十分性の確認が必要な時に書くと言われるけど、いつ必要か教えてください 問題の263では必要なくて、266や267では必要でした

円 重要事項 ◆楕円 標準形 (aas aas) (1) 次の楕円の長軸の長さ, 短軸の長さ, 焦点および頂点を 求めよ。 また,その楕円の概形をかけ。 x² 1,² + -=1 36 16 (ア) ★★★ 楕円と線分 24 楕円 ポイント⑩ 楕円 内分点の 23 長さが6の線分ABの端点Aはx軸上を,端点Bはy軸上を 跡 動くとき,線分 AB を 15 に内分する点Pの軌跡を求めよ。 ・ポイント② P(x, y), A(s, 0), B (0, t) とおける。 s, tをx,yで表し て s, t の満たす式に代入し,xとyの関係式を導く。 x² ◆楕円と円 楕円 (2) 次のような楕円の方程式を求めよ。 (ア)2つの焦点 (2,0),(2,0) からの距離の和が8 (イ) 長軸の長さが12, 短軸の長さが8, 中心は原点で,長軸 はy軸上にある。 + [aas ras] MON a² +²2=1 a>b>0のとき 焦点 (±√²-62,0) ( 焦点はx軸上) boot >>0のとき 焦点(0, ±√32-α² ( 焦点はy軸上) +3² x² q² 8² (イ) 4x2+25y2=100 (ウ) 7x2+y²=49 x ² (a>b>0) 62 =1_ (a>b>0)______-) AJECT 1. 中心は原点, 長軸の長さは2α, 短軸の長さは26 ral B(α, 0) とする。 この楕円上の点Pから長軸 ABに垂線PQを 下ろすとき, PQ2 AQ・BQ の値は一定であることを示せ。 ポイント ③ P(x1, y1) とおき, 各線分の長さを X1 V1 で表す。 重要 = 1 (a>b>0)の長軸の両端をA(-α, 0), 105N (= ²€ +0+² 14 2. 焦点は2点 (±√a^-620) [a>b>0 に注意] 4. 楕円上の点から2つの焦点までの距離の和は2a 注意>a>0なら,長軸の長さ 26, 短軸の長さ 24, 焦点(0, ±√6-α²) 楕円上の点から2つの焦点までの距離の和26 注意 座標軸との交点は (±α, 0, 0, ±b) [α = b なら円] x² a² に縮小または拡大して得られる曲線である。 3.x軸,y軸, 原点に関して対称 倉庫 x 1² =1は,円x+y=d² をx軸をもとにして軸方向に2倍 62 A HAS /26② 次の楕円の長軸の長さ, 短軸の長さ, 焦点および頂点を求めよ。 また,その楕円の概形をかけ。 2 (1) x² +²2=1 *(2) 3x²+6y²=18 *(3) 2x2+y²=4 16 9 *2632点 (5,0), (-5,0) からの距離の和が12である点Pの軌跡 を求めよ。 7 楕円 19 〒264円x²+y²=25 を,y軸をもとにしてx軸方向に1/43 倍にする と どのような曲線になるか。 5 B *265 次のような楕円の方程式を求めよ。 中心は原点とする。 (1) 焦点間の距離が4, 長軸の長さが8, 長軸がx軸上にある。 /3 (2) 2 (-3, √35), (1, √3) を通り, 2つの焦点がx軸上に 6 ある。 (3) 焦点が2点 (0, 4), (0, -4), 短軸の長さが6 *266 長さが4の線分ABの端点Aはx軸上を, 端点Bはy軸上を動 くとき,線分 AB を 53 に外分する点Pの軌跡を求めよ。 x 1² 9 2672点A(-2,0),B(2,0),楕円 x² 45 きる AQBの重心Pの軌跡を求めよ。 ....... 10 =1 上の点Qでで *268 楕円x2 +4y2 = 4 上の点Pと点 (10) の距離の最小値,お よび最大値を求めよ。 274 ...... ② *269 原点を0,楕円 +1=1とy軸の交点をA,Bとする。 x² 9 25 A, B 以外の楕円上の点をPとし、直線PA, PB とx軸の交点 をそれぞれ Q R とするとき, OQ・OR の値は一定であることを 示せ。 ...... 1 ......

回答募集中 回答数: 0
数学 高校生

写真の赤丸⭕️の部分が、いつもプラスにするのかマイナスにするのかあやふやになります、、、 どうやって見分けるのか分かりやすく教えてください🙏🙇‍♀️

84 第2章 2 次 Think 例題 33 練習 ** 33 平行移動(②2) (1) 放物線y=-x+4x+1 は放物線y=-x2-6x+7 をどのように 平行移動したものか. (2) ある放物線Cを,x軸方向に2,y 軸方向に1だけ平行移動すると、 飲物線 y=2x-3x+4 になった。 放物線Cの方程式を求めすると 考え方 (1) 頂点の移動を考える. どちらをどちらに平行移動するのかを、しっかりおさえ (2) 放物線y=2x-3x+4 を逆に, x軸方向に -2,y 軸方向に1だけ平行移動 WALL ると, 放物線Cが得られる. Focus 解答 (1)y=x2+4x+1=-(x-2)2+5 より,頂点は点 (25) y=−x²−6x+7= −(x+3)²+1651 より,頂点は点(-3, 16) 頂点(-3.16) が点(2.5)に移動するから x 軸方向に, 2-(-3)=5 5-16=-11 (2) 放物線y=2x2-3x+4... ① を逆に, x軸方向に ―2 y軸方向に -1) だけ平行移動したものが, 放物線Cである. y軸方向に だけ平行移動している. よって,x軸方向に5,y 軸方向に-11y=2x²3x+4 よって, y=2x2+5x+5 逆の移動を考える 605061 放物線C つめる。 よって、①のxをx+2, y を y+1 におき換えて, _y+1=2(x+2)2-3(x+2)+4 STOS CASERT y=2(x²+4x+4)=3x-6+3 (8) 「x軸方向にか 軸方向に g [x軸方向に 頂点の座標をます JEAN- (移動した分) (後(前) ちなよ! 軸方向に-g VJ 頂点の移動で考えて もよい. C 放物線 C' (1) 放物線y=2x²-4x-1 をどのように平行移動すると, 放物線 y=2x2+8x- になるか. (2) ある放物線Cを,x軸方向に2,y 軸方向に3だけ平行移動すると, 線y=-x²+2x+3 になった. 放物線Cの方程式を求めよ. 放物 p.92 Cor <グ 対 たすあて とす であ ので 点 京 とな

回答募集中 回答数: 0
数学 高校生

超簡単な対称移動の問題です。答えも解説も全て載ってます👍🏻👍🏻 解答1解答2があると思いますが、この答えは答える時平方完成の式でも平方完成をする前のy=ax²+bx+Cの式でも正解なのでしょうか???

例題 34 対称移動 放物線 y=x2-2x+5 を、 次のものに関して対称移動した放物線の方 程式を求めよ. (1) x軸 [考え方] x軸対称 解答2(1) (x,y) (2) y軸 Focus y軸対称 Her y) (x,-y) 解答 1 y=x²-2x+5=(x-1)*+4 (-x, y) より,頂点は点(14) で下に凸の放物線である. (1) 頂点が (1,4) (1, -4) で上に凸となる. よって, (2) 頂点が (1,4)→(-1,4) で下に凸となる. よって, y=(x+1)2+4 (3) 頂点が (1,4)→(-1, -4) で上に凸となる. よって, y=-(x+1)^-4 y=-(x-1)²-4 (3) 原点 軸に関して対称移動y を -y におき換える. -y=x²-2x+5 より. y=-x²+2x-5 (-x-y) (2) y軸に関して対称移動 x を xにおき換える. y=(-x)-2(-x)+5 より, y=x2+2x+5 (3) 原点に関して対称移動 x をx, y を -y におき換 える. y=(-x)-2(-x)+5 より, y=-x-2x-5 X 軸対称・・・ を -y におき換え ****** 原点対称 各軸や原点に関する2次関数のグラフの対称移動 ① 頂点の移動と、凹凸の変化 >例題 34 のように、 答えは標準形でも一般形でもよい。 y軸対称・・・ xをxにおき換え ****** 原点対称・・ x-xをy におき換え 2 (3) **** Exk AV 放物線y=3x-6x-7 について 次の問いに答えよ. 34 (1) x軸、y軸, 原点に関して対称移動した放物線の方程式をそれぞれ求めよ。 に関して対称移動した放物線の方程式

未解決 回答数: 1
1/4