学年

教科

質問の種類

数学 高校生

証明の2段目にx=0,1,-1,2で等式が成り立つと書いていますが、これは証明するためにこの4つの値で考えているという解釈で合っていますか??

自係数比較法 検討 係数比較法は, 恒等式の性質 (p.35 基本事項 2① : 各項の係数はすべて0) が根拠となる これをPがxの3次式の場合, ax+bx+cx+d=0 ・・・・・・ A について証明してみよう。 [証明] ax3+bx2+cx+d=0 A がxについての恒等式とする。 ...... x=0,1,-1,2で等式が成り立つから x=0 のとき d=0 ① x=1 のとき a+b+c+d=0 x=-1 のとき -a+b-c+d=0 x=2 のとき 8a+46+2c+d=0 ①から a+b+c=0 -a+b=c=0 8a+46+2c=0 ...... ...... 000 ② +③ から 26=0 ゆえに 6=0 このとき, ②, ④ から a+c=0, 8a+2c=0 これを解いて a=c=0 よって a=b=c=d=0 B 逆に,Bが成り立てば明らかに A は 3 0.x3+0.x2+0.x +0=0となり,これは 4 xについての恒等式である。 ...... すなわち ax+bx+cx+d = 0 がxについての恒等式⇔a=b=c=d=0 ax+bx+cx+d=a'x+b'x' + c'x+d' がxについての恒等式 ⇔(a-a′)x3+(b-b')x2+(c-c)x+(d-d')=0 がxについての恒等式 よって, その各項の係数はすべて 0 であるから a=a', b=b', c=c', d=d' なお, 上の証明では,次のように、 2つの部分を示していることに注意する。 Aが恒等式 x=0, 1, -1,2で成立α=b=c=d=0 (必要条件) a=b=c=d=0 A が恒等式 ( 十分条件)

回答募集中 回答数: 0
数学 高校生

数B 標本の問題です。写真の問題で、私はこれを(n,0.4)の二項分布に従うと考え、⑴の平均もn×0.4=0.4nだと思ったのですがこれは何が間違っているのでしょうか。 また二項分布の平均、分散の公式はいつ使えるのでしょうか。明日がテストなので焦っています💦お答えいただける... 続きを読む

考え方 母集団から無作為に標本 X, X2,..,X, を抽出すると, 独立な確率変数X,X= X" のそれぞれの平均 E (X) と標準偏差 (X)は,母集団と一致する. **** 例題 B2.12 標本平均の平均・標準偏差 H ある都市での有権者のA政党支持率は40% である. この有権者の中か 1400 ら無作為にn人を抽出するとき、k番目の人がA政党支持者なら1を不 支持者なら0の値を対応させる確率変数をXとし, 標本平均をXとする。 (1) X の平均を求めよ. を否定するだけの根拠が得られなかった (2) X の標準偏差 (X) が0.04 以下となるためのnの最小値を求めよ. 解答(1) 母集団の確率分布は, A 政党支持なら1, 不 支持なら0でA政党支持率は40% より,右 のようになる. To. in X の平均は,E(X)=E (1 (Xi+X2+..+X) n よって,母平均は,m=1×0.4+0×0.6 = 0.4 より,E(X)=m=0.4 cus よって, E(X)= n (2) 母集団の標準偏差oは, 検定を行う=√(1²×0.4+0°×0.6) -m²=√0.4-0.4°=√0.24 家であり、標本平均 X の標準偏差は, 1 =- 008 Vn² √0.24 0.04 1 {E(X₁) + E(X₂) + ······+E(X₂)} n (X)=√(X) = V ( ²1 - (X₁ + X₂ + ... + X₂₁) $$__@@ _@_____ = √ √ 2 / (V(X) 2/2 (V(X) + V (X₂) +----+ V (X») } + V( N (m+m++m)=m=0.4 = = √ √ 12/23 (0² + 0 ² + したがって,(X)=1 確率変数 確率 √0.24 ... + 0 ² ) = "+") -√²-0 to n より 0.24 0.0016 √0.24 より nz 4=150 10 計 0.4 0.6 1 E(aX+bY) =aE(X) + bE (Y) E(X₁)=E(X₂)=··· ......=E(X)=m o=√E(X^)-{E(X) X1, X2, ....., Xn は 独立とみなしてよい. X, Yが独立のとき V (aX+bY) = aV (X) +6°V (Y) - ≧0.04 であるから、 TUISS よって, n の最小値は150

回答募集中 回答数: 0
数学 高校生

(1)(ii)の設問で、yの値の増加・減少、頂点で場合分けをしているのは理解できますが、それ以外さっぱり理解できませんので、一からご教授いただけないでしょうか?

SoftBankの <質問 あ 35 最大取なペー 参 けて求めよ. (i) a <1 (1)y=-x+2ax (0≦x≦2)の最大値を,次の3つの場合に分 けて求めよ. ①1/12× (1) a<0 精講 (iii) 2<a (2)y=x²-4x(a≦x≦a+1) の最小値を,次の3つの場合に分 最大値 最小値の権利があるのは, 16:49 (i)a<l のとき x=a² 回答 -0 0≦a≦2 (1)は式に文字が含まれ, (2)は範囲に文字が含まれていますが,どち らの場合もグラフは固定し、 範囲の方を動かして考えます.このと き, 大切なことは場合分けの根拠で, 34 のポイントにあるように, 4a-4 x=0x=2 上のグラフより 最大値 0 (x=0) I. 範囲の左端 ⅡI. 範囲の右端 ⅢII. 頂点 の3か所です。(ただし, ⅢIはいつも範囲内にあるわけではない) このなかで,入れかわりが起こるときに場合を分ければよいのです. (たと えば,いままで左端で最大であったのに、次の瞬間には右端が最大になるとき) (ii) 1≤a≤2 解 (1) _y=-x²+2ax=1&px √² + a² 最小値は, (iii) 2<a Q 27% ● x=a (ii) 0≦a≦2のとき (i) 2<α のとき 4a-4-1 40-4 a=27=²014. ・4x2-4 :8-4 = 4 x=0 x=2 上のグラフより 最大値 α² (x=α) 4a-4 (a <1 のとき) (1≦a のとき) x=a x=0x=2 上のグラフより 最大値 4a-4 (x=2) となる. 「頂点がx=aなだけであってグラフ全体がx=aではないと いうことになりますか?」 閉じる ・グラフの頂点はy値に対してです。 「頂点がx=a」とは言い の範囲は

回答募集中 回答数: 0
数学 高校生

問い2、3がわからないため、教えていただいきたいです。問1の答えは6<k<3分の22になりました。

令和4年度 数学Ⅰ このパフォーマンス課題は以下のルーブリックに従って評価します。 ①~③は問題番号に対応しています。 A B 0 3つの条件をして解き の値の範囲を求めることが できた。 3つの条件を立式することが (2) 整数kを代入した2次方程式 必要な条件を立式して解き、 解き 根拠とともに正しく結論を 解が4より大きいことを示導くことができた。 すことができた。 整数kを代入した2次方程式 必要な条件を立式すること を解くことができた。 ができた。 できた。 3つの条件を立式しようとし 整数を代入した2次方程式 必要な条件を立式しようと を解こうとした。 した。 A: 2次方程式を解きすぎて極めてしまったなあ。 B : それじゃあ2次方程式の解を一緒に配置してみようよ。 A:へえ, 面白そう!!!! どうやるの? B : 例えば、次のような問題を考えたよね。 (教科書p116類題) ②次方程式x2mx+m+6=0が0より大きい異なる2つの解をもつような 定数の値の範囲を求めよ。 (解説) f(x)=x²-2x+m+6とすると 2次方程式f(x)=0が0より大きい異なる2つの解をもつ ための条件は,放物線y=f(x)がx軸の正の部分と, 異なる2点で交わることである。 これは,次の [1]~[3] が同時に成り立つことと同値で ある。 f(x)=(x-m)²-m²+m+6 [1] x軸と異なる2点で交わる [2] 軸がx>0 の部分にある [3] y軸 (直線x=0) との交点のy座標が正 すなわち [1] f(x)=0 の判別式をDとすると D -=(-m)²-(m+6)=m²-m-6>0 m+6 712 -6 x=m これを解いて <-2,3<m ...... ① [2] 放物線y=f(x) の軸は直線x=mで, この軸について m > 0 ...... ② [3] f(0) > 0 から m+6>0 よって m> -6 ③ ①, ②, ③ の共通範囲を求めて m>3 A: そういえばこんな問題あったね。 B : この考えを活用して、 次の問題を考えてみよう。 A:さっきの[1]~[3] の条件はどう変わるかな? 11 2次方程式x^2kx+5k+6=0…☆ が4より大きい異なる2つの解をもつような 定数kの値の範囲を求めよ。 -20 3 V [A[2]と[3]が少し難しかったけれど,何とかの値の範囲を求めることができたよ。 B: さすがだね。 でも, 本当にkの値がこの範囲にあるとき 2次方程式☆は 4より大きい異なる2つの解を持つのかな? A : 実験してみよう! B: 唐突だけれど, √2 = 1.4142・・・ だから, V2 < 1.5 だよね。 2上で求めたの値の範囲を満たす整数kを, 2次方程式に代入して解け。 また, その解が4より大きいことを示せ。 m A : √ が出てきて少し困ったけど、確かに2つの解は4より大きいね。 B : 本当だったね。 同様に考えれば, あらゆる数について, より大きい異なる2つの解をもつような定数kの値の範囲を求められるのかな? A 6で実験してみよう! 3 2次方程式x2-2kx+5k+6=0…..☆ が6より大きい異なる2つの解をもつ場合はあるか。 | ある場合もない場合も理由を述べよ。 AB: へえ,こうなるんだ!

回答募集中 回答数: 0
1/4