学年

教科

質問の種類

数学 高校生

なぜ第1象限で接したとき最大なのですか?

x, 2 領域と分数式の最大・最小 yが2つの不等式 x-2y+1≦0, x2-6x+2y+3≦0 を満たすとき, |最大値と最小値, およびそのときの x, yの値を求めよ。 y-2 y-2 x+1 の ・基本 122 連立不等式の表す領域Aを図示し, 指針 x+1 =kとおいたグラフが領域 Aと共有点をも つようなんの値の範囲を調べる。 この分母を払ったy-2=k(x+1) を通り,傾きがんの直線を表すから、傾きんのとりうる値の範囲を考えればよい。 (1,2) CHART 分数式 y-b 最大 最小 y-b x-a =kとおき, 直線として扱う x-a x-2y+1=0 ①, x2-6x+2y+3= 0 2 YA 解答とする。連立方程式①,②を解くと P (x,y)=(1,1) (4,212) 5 ② -=kとおくと ゆえに、連立不等式x-2y+1≦0, x2-6x+2y+3≦0 の表 す領域 Aは図の斜線部分である。 ただし, 境界線を含む。 y-2 3 (3 2 2 y-2=k(x+1) (3) RY x+1 すなわち y=kx+k+2 ③は,点P(-1,2)を通り, 傾きがんの直線を表す。 図から, 直線 ③が放物線 ②に第1象限で接するとき この値は最大となる。 ② ③からyを消去して整理すると x2+2(k-3)x+2k+7=0 このxの2次方程式の判別式をDとすると D 4 =(k-3)2-1 (2k+7)=k-8k+2 直線 ③が放物線 ②に接するための条件はD=0であるか ら, k2-8k+2=0 より k=4±√14 第1象限で接するときのkの値は k=4-√14 このとき、接点の座標は (√14-1, 4√14-12) k(x+1)-(y-2 = 0, x=-1, y=2のときん についての恒等式になる。 →kの値に関わらず定 点 (1,2)を通る。 k=4+√14 のときは, 第3象限で接する接線と なる。 次に,図から直線 ③が点 (1, 1) を通るとき,kの値は最 小となる。このとき k= 1-2 = -1/ Ak= y-2 ソニに代入。 1+1 よって 2 x=√14-1, y=4√14-12 のとき最大値 4-√14; x = 1, y=1のとき最小値- x+1 0r2+4x-y+2≦0 を満たすとき の最大値 x-2 201 3章 1 不等式の表す領域

回答募集中 回答数: 0
数学 高校生

途中式も一緒にアからタの求め方を教えてください。 (3)も途中式ありでお願いします!

。 先生と生徒2人 次のア 2 の3人の会話を読み, ア に適する記号または数式を答えよ。 先生: 定期考査お疲れさまでした。 それではI課題いきまし ょう! 問題 a, b, c を実数とし,f(x)=x+ax2+bx+c とする ウ 関数 f(x) は,f(2)=10,f'(2) =13, f(x)dx=6 を満た オ しているとする。 また, k を正の実数とし、 2つの曲線 Cy =f(x) とC2:y=kx2 は異なる3個の共有点をもつとする。 (1) 関数 f(x) を求めよ。 (2)kのとりうる値の範囲を求めよ。 (3)2つの曲線と C2 で囲まれた2つの部分の面積が等し いとき, kの値を求めよ。 先生: 難しい問題ですが頑張っていきましょう。 まず、1つずつ処理していこう! j(2) = 10 から 整理すると キ ケ サ ア a + イ b+ c = ウ ****** ①ができるよ。 次に,f'(2)=13 から 整理すると ス H a+b= オ ②となるね。 また、Sof(x)dx=f(x+ax'+bx+c)dx=6 であるから 整理すると, a + キ b + ク c =3 ③ カ となるので,① ② ③ を解くと, a=4 ,b== ,C= サ より f(x)=シだね。 先生: 正解です。 では (2) も頑張ってみましょう。 (2)kのとりうる値の範囲を求めよ。 シ=kx2とするとス =0 ス =0. ④はx=セを解に もたないから, C と C2 が異なる3個の共有点を もつための条件は④の判別式をDとするとソ となり、求めるkの値の範囲はタ です。 ソ の解答群 (あ) D=0 (V) D÷0 (う)D> 0 (え) D≧0 (お) D< 0 (か) D≦0 ソ 正解です。 では、最後の問題です。 (3)2つの曲線とC2で囲まれた2つの部分の面積が等し いとき, kの値を求めよ。 イ H カ ク コ シ セ タ ~~~以下計算スペース~~~

回答募集中 回答数: 0
数学 高校生

下の方、縦線の右側にk=4+√14のときは第3象限で接する接戦となるとありますがなぜですか??

6:1 x, が2つの不等式x-2y+1≦0, x2-6x+2y+3≦0 を満たすとき, 最大値と最小値, およびそのときのx, yの値を求めよ。 の y-2 x+1 基本122 連立不等式の表す領域Aを図示し, y-2 x+1 -=kとおいたグラフが領域Aと共有点をも つようなんの値の範囲を調べる。 この分母を払ったy2=k(x+1)は,点(1,2) を通り, 傾きがんの直線を表すから,傾きんのとりうる値の範囲を考えればよい。 CHART 分数式 y-b y-b 最大 最小 =kとおき, 直線として扱う x-a x-a x-2y+1=0. ①, x2-6x+2y+3= 0 解答とする。連立方程式 ①,②を解くと ② ③ (x, y)=(1, 1), (4, 5) ゆえに、連立不等式 x-2y+1≦0, x2-6x+2y+3≦0 の表 す領域 A は図の斜線部分である。 ただし, 境界線を含む。 y-2 x+1 =kとおくと 10 y-2=k(x+1) 12 2 0 5 2 32 すなわち y=kx+k+2. ...... ③は,点P (-1,2)を通り, 傾きがんの直線を表す。 図から, 直線 ③が放物線 ②に第1象限で接するとき,k の値は最大となる。 ② ③ からy を消去して整理すると x2+2(k-3)x+2k+7=0 このxの2次方程式の判別式をDとすると k(x+1)-(y-2) = 0 は, x=-1, y=2のとき についての恒等式になる。 →kの値に関わらず定 点 (1,2)を通る。 D =(k-3)²-1-(2k+7)=k²−8k+2 直線 ③ が放物線 ②に接するための条件はD=0であるか k=4±√14 ら, k-8k+2=0 より 第1象限で接するときのんの値は 4/14k=4+√14 のときは, このとき、接点の座標は (√14-1,4√14-12) 第3象限で接する接線と なる。 次に,図から, 直線 ③ が点 (1, 1) を通るとき,kの値は最 小となる。このとき k=1=2=123k=メ 277に代入。 よって 1+1 x=√14-1,y=4√14-12 のとき最大値 4-14; 1 x+1 x=1, y=1のとき最小値 - 2

回答募集中 回答数: 0
数学 高校生

比例式 、サイクリックな式の本質は、 軌跡領域の逆像法でパラメータの存在条件を考える時と同じですか?

11 比例式, サイクリックな式 xy+yz+zx (ア) x+4y y+4z z+8エ 3 をみたす正の実数x, y, z について, 2+12+22 6 4 (椙山女学園大) である. I (イ) y Z y+z 2+1 このとき,この式の値は,x+y+z=0のとき x+y x+y+z=0 の (麻布大獣医) とき である. 比例式はとおく 条件式が ==形(ry:z=a:b:cを意味する比例式)で与えら abc れたときには、この分数式の値をkとおくのが定石で、こうすると計算にのせやすい。 サイクリックな式 (イ)の式の値をとおくと,r=k(y+z) などとなる.ここで, x,y,zをそれぞれy,z, xに入れ替えていくと, x=k(y+z) ⑦ y=k(z+x) ⇒ z=k(rty)..・・・・ウ となり,もう1回やると⑦⑦になる. このように,文字がグルグル回る, ア~⑦を サイクリックな式を言うが、この3式を辺ごとに加えると対称式になり,扱い易くなる. 解答 (ア) x+4y y+4z 2+8x 3 =k (k>0) とおくと, x, y, zが正により, k>0 6 4 x+4y=3k ①y+4z=6k... ②, z+8x=4k...... ③ ①によりェ=3k-4y で, これと③から z = 4k-8=32y-20k これを②に代入して, y+4(32y-20k)=6k 等式の条件は,文字を消去するの が原則 86 2 129 3 y= -k= ==k, I=3k-- 4 -k, z=4k- -k= -k 3 3 E そのままk=31 (1>0) とおいて,r=l, y=21,z=4l 大変 1-21+21-41+41.1 _2+8+4 14 2 よって, 求値式= = 2+(21)+(41) 2 1+4+16 21 23 I (イ) y 2 =k...... ① とおくと, y+z z+x x+y x=k(y+z) +42-6 2+8x-4f 1 k>o ②,y=k (z+x)...... ③, z=k(x+y)......④ ②+③ + ④により,x+y+z=2k(x+y+z) 1°x+y+z≠0のときは, これで割って,k= 1 2 2° x+y+z=0 のとき, y+z=-xとなり,①によりk=-1 注1°のとき,②③によりx-y=1/2 (y-x)となるから,r=y よって①とから,r=y=z となる. ←前文参照. 11 演習題 (解答は p.28) y+4(223-200 36 b+c c+a a+b b+c とする.このとき、 の値は (1) であり,a+b+c=0 a b C a a+b+c+6abc のときの の値を求めると (2) である. (福岡大) (b+c)a 後半は1文字消去すれば 解決する。

回答募集中 回答数: 0
数学 高校生

数A 組み合わせ カの問題がなぜ答えのようになるのかが分かりません。 教えていただけると嬉しいです!

8 以下は自然数, は以下の自然数とする。 次の先生と百まんさん に当てはまる記号や数式, 数字を とイヌワシ君の会話を読み、 答えよ。 大間 8 は解答欄に答のみを記入せよ。 先生:C の値をどのように考えたらいいと思う? 百まんさん: n個から0個とる組合せの総数なので0じゃないのかな。 イヌワシ君:まって, 確か。 Po=1,0!=1 と定めたはずだよ。 このことと, ア C, C,= 7! と表されることから,Co= イ と定め るといいんじゃないかな。 先生:その通り。 他の考え方もあり, 例えば6人から4人を選ぶことは, 選ば ない2人を決めることと同じなので, 6C4 = C2 の等式が成り立ちます。 一般に,n個から個取る組合せの総数は, n個から ウ個取る組 合せの総数と同じなので,nC=n = "q ・①の等式が成り立 (ウ) つ。 これより C の値は I と等しいと考えることが出来るので Cは(イ)と言えます。 百まんさん: ①の他にもCに関連する等式はありますか? 先生: 1 C, C,+C1-1 ・・② という等式が成り立ちます。 まんさん:例えばC=C+オ となるはずですね。確かめてみま す•••••• ほんとだ, 確かに両辺とも126になっています。 先生 ②の等式は次のように説明出来ます。 1.2.3.. +1のn+1枚 のカードから枚取る組合せを のカードに注目して、次の2つの 組合せのグループに分けます。 (A) 1 のカードを含んでいる組合せのグループ (B) のカードを含まない組合せのグループ (A) は カ通りあり、(B) はキ通りあります。 n+1枚のカードから枚取る組合せは必ず (A) か (B) のいずれかの グループに含まれているので,②の等式が成り立ちます。 イヌワシ君: なるほど。 この考え方を応用すれば新しい等式を作ることが出来 そうです。 を2以上の自然数として,n+2枚のカードからr枚 取る組合せを (A) 1 を含む組合せ (B) 1 を含まず 2 を含む組合せ (C) I も2も含まない組合せ に分類して考えると, 新しい等式が得られるのではないで しょうか。 先生 さすがイヌワシ君。 よく出来ました。

回答募集中 回答数: 0
数学 高校生

ここの問題が全然わかりません…良かったら教えてください…😭

座標平面上において, 点を座標で表し、 図形を方程式で表すことを学んだ。 ここでは、このことを図形の性質の証明に利用することを考える。 考察 △ABC の辺BCの中点をMとすると 3-1 AB+ AC = 2 (AM2+BM2) 2) k² 2 が成り立つことを,どのようにしたら証明できるだろうか。 真さん: 辺 AB の長さを 2 点 A, B間の距離と 14 Leve 5 みて, 座標を利用して考えられないかな。 悠さん: 右のような三角形ABC に対して座標 軸をどのように設定したらよいのかな。 B M C 10 座標を利用して考えると,次のように証明できる。 点Mが原点,辺BCがx軸上になるよ y (ab) A(a,b) うに座標軸を設定すると, △ABCの頂 点 A, B, C の座標は, それぞれ A(a, b), B(-c, 0),C(c, 0) 0=(1+-+- 5 とおくことができる。 このとき # AB2 + AC2 DB(-c, 0) M(0,0) C(c, 0) = ={(a+c)+62}+{(a-c)+62} (a,d) = 2(a²+b²+c²) Ac 2(AM²+BM²) = 2 {(a² + b²)+c²} = 2(a²+b² + c²) したがって AB2 + AC2 = 2 (AM2+BM2) #問15 上の説明では, どのような工夫をして座標軸を設定しているか。 頂点 C の座標をA(a, b), B(c, d), C(e, f) とおいた場合の証明を想定 説明せよ。 図形の性質を証明するには、座標を用いて次のようにするとよい。 1 座標軸を適当に設定し、 図形の関係を数式で表す。 2 得られた数式を用いて計算する。 3 計算結果を図形的に解釈する。 1 賀

回答募集中 回答数: 0
数学 高校生

2.1 解き方ってこれでも問題ないですよね??

作り の符号で特 を考える とみ を図示 -26 28 2を買 同じ、 2倍 解答 内の 点 (1) AB+EC+FD-(EB+FC+AD) =AB+EC+FD-EB-FC-AD =(AB+BE)+(EC+CF)+(FD+DA) =AE+EF+FA=AF+FA kit. 基本例題2 ベクトルの等式の証明, ベクトルの演算 (1) 次の等式が成り立つことを証明せよ。 AB+EC+FD=EB+FC+AD 3倍 指針 (1) ベクトルの等式の証明は、通常の等式の証明と同 じ要領で行う。 ここでは, (左辺) - (右辺) を変形し て=0 となることを示す。 (2) (ア) x=2a-36-c, y=-4a+56-3C のとき, ya, b,こで表せ。 (イ) 4-3a=x+66 を満たすxをaで表せ。 (3x+y=d, 5x+2y=を満たす,をもで表せ。 を利用するこ 合成 P□+□=PQ, P=PQ ベクトルの計算では,右の変形がポイントとなる。 分割PQ=P+ℓ, (2) ベクトルの加法,減法,実数倍については,数式PQ=Q-□P と同じような計算法則が成り立つ。 向き変え PQ=-QP PP=0・・・ 同じ文字が並ぶと (ア) x=2a-36-c, y=-4a+56-3cのとき, の安心 x-yをa,b,c で表す要領で。 (イ) 方程式 4x-3a=x+66 (ウ) 連立方程式 3x+y=a, 5x+2y=b を解く要領で。 =AA=0 ゆえに AB+EC+FD=EB+FC+AD (2) (7) x−y=(2a-36−č) − (−4ã+5b−3c) =2a-36-c+4a-5b+3c =6a-8b+2c (イ) 4x3x+65から 4x-x=3a+65 よって ゆえに 3x=3a+66 x=a+2b Bi (1) 3x+y=a.. ① x2-② から これを①に代入して 6a-3b+y=a よって 1, 5x+2y=6 =2ab y=-5d+36 00000 ② とする。 CA 384 基本事項 ②③ ... CIDE 左辺(右辺) Sa+da+ sa 向き変えEB=BE など。 合成AB+BE = AÉ など。 検討 A□+□△+△A=0 (しりとりで戻れば ① ) この変形も役立つ。 ただし, それぞれ同じ点。 なお,00と書き間違えな いように。 両辺を3で割る。 6x+2y=2a 1-) 5x+2y=6 x =2a-b 387 1章 ベクトルの演算

回答募集中 回答数: 0
数学 高校生

これ方程式を解いた答えとグラフが方程式を満たすxの値ってどうして一致するんですか?

基本例 3 分数関数のグラフと直線の共有点,分数不等式 (1) 関数 y= 2 (2) 不等式 指針 (1) 解答 x+3 のグラフと直線y=x+4の共有点の座標を求めよ。 <x+4 を解け。 2 x+3 y= 共有点実数解 すなわち、分数関数の式と直線の式からyを消去した 2 x+3 方程式 (2) 不等式 f(x) <g(x) の解 ⇔y=f(x) のグラフがy=g(x)のグラフより下側にあ るようなxの値の範囲 2 x+3 (1) ①, ② から =x+4の実数解が共有点のx座標である。 ①, y=x+4 グラフを利用して解を求める。 なお,分数式を含む方程式・不等式を 分数方程式・分数不等式 という。分数方程式・ 分数不等式では,(分母)≠0) というかくれた条件にも注意が必要である。 CHART 分数不等式の解グラフの上下関係から判断 2 x+3 両辺に x+3を掛けて =x+4 2=(x+4)(x+3) 整理して x2+7x+10=0 ゆえに (x+2)(x+5)=0 よって ②から ② とする。 x=-2,-5 x=-2のときy=2, x=-5のときy=-1 したがって, 共有点の座標は (2) 関数 ① のグラフが直線 ② の 下側にあるようなxの値の範 囲は,右の図から -5<x<-3, -2<x 注意 グラフを利用しないで,代 数的に解くこともできる。この 方法は次ページで学習する。 -4 -5 1 YA -3 -20 4 2 基本 1 y=g(x) (-2,2), (-5, -1) (1) y X y=f(x) 5 <yを消去。 2次方程式に帰着される [ただし, (分母)≠0 す なわち x≠-3という条 件がかくれている]。 x=-2. -5は 2 x+3 分母を0としないから、 方程式 2 x+3 解である。 (1) のグラフを利用。 =x+4の の共有点の座標を求めよ。 1 章 ① 分数関数・無理関数 <xキー3に要注意! x=-3 は, 関数 ① の定 義域に含まれない (つま り, グラフが存在しない)。

回答募集中 回答数: 0
1/17