学年

教科

質問の種類

数学 高校生

186. このような記述でも問題ないですよね? またこの類の問題ではほとんどの場合互いに素を用いるように思うので、互いに素を使いたい、そして有理数の性質(m/nでm,nは整数でn≠0)よりこのような証明方法になるということですよね? また、有理数であることを仮定してから、「... 続きを読む

演習 例題186 指数方程式の有理数解 (1) 3*=5 を満たす xは無理数であることを示せ。 (②2) 35-2y=53-6 を満たす有理数x,yを求めよ。 m (m,nは整数,n≠0) と表される数を有理数といい, 有理数でない n 指針 実数において, ものを無理数 という。 (1) 無理数であることの証明では, 有理数であると仮定して, 矛盾を導く (背理法)。 (2) 方程式1つに変数がx,yの2つ。 有理数という条件で解くから, (1) が利用できそう。 底が3,5であるから, 3' =5 [(1)] の形にはならないことを用いる。 解答 (1) 3=5を満たすxはただ1つ存在する。 そのxが有理数であると仮定すると, 3*=5>1 であるから m CHART 無理数であることの証明 (有理数) とおいて、 (1) n 背理法 事柄が成り立たないと仮定し て矛盾を導き, それによって m x>0で,x=- (m,n は正の整数)と表される。 =(a+事柄が成り立つとする証明法 (数学Ⅰ)。 n m 37=5 よって 両辺をn乗すると 3m=5n ① ここで,①の左辺は3の倍数であり,右辺は3の倍数ではな いから,矛盾。 よって, xは有理数ではないから、無理数である。… 3x-y+6=5x+2y (2)等式から 2) spol x+2y=0 と仮定すると, ② から x-y+6 3x+2y = 5 練習 ③ 186 x,yを有理数とすると, x-y+6, x+2y はともに有理数で x-y+6 x+2y ...... ゆえに このとき, ② から よって x-y+6=0 ④,⑤を連立して解くと も有理数となり, (1) により③は成り立たない Gram x+2y=0 000 3x-y+6=1 基本 167 x=-4, y=2 等式 20x10y+1 を満たす有理数x,yを求めよ。 3と5は1以外の公約数を もたない。 このとき,3と 5は互いに素 という。 3÷36=5÷5-2y 3x-(y-6)=5x-(-2y) ②から3-y+6)x+2y X = (5x+2y)x+2y (1) で3'=5を満たすは 無理数であることを証明し ている。 KH ④: x+2y=0 と仮定して, 矛盾が生じたから, x+2y=0 である。」< 40 T810 Op.294 EX120 53

回答募集中 回答数: 0
数学 高校生

なぜ、xの値とtの値が対応してるのですか? tとkの関係もわかりません。

例題 169 指数方程式の解の個数 方程式 4x-2x+2 + k = 0 の異なる実数解の個数を調べよ。 Action f(x)=hの実数解は, y=f(x)のグラフと直線y=kの共有点を調べよ ・12x=t(>0) とおき,与式をf(x) - ) =kの形に変形する。 解法の手順・ 2xの値とtの値の対応を考える。 3|y=f(t) のグラフを利用して, 実数解の個数を調べる。 解答 与えられた方程式を変形すると -(2x)2 +4.2% = k ... ① 2* = t とおくと, t>0 であり - t² + 4t = k ここで,xの各値に対して tがただ1つ求まり、逆にt> 0 を満たすtの値に対してもxの値が必ず1つ定まるから, 方程式 ① の異なる実数解の個数は,t の方程式②のt> 0 における実数解の個数と一致する。 ここで, f(t)= t + 4t とおくと f(t)=-(t-2)2 +4 方程式f(t)=kのt> 0 を満たす実数 解は, y = f(t)(t> 0) のグラフと直線 y=kの共有点の座標である。 したがって、右のグラフより 求める実数解の個数は k> 4 のとき 0個 k=4,k≦0のとき 1個 0<k<4 のとき 2個 4 O _y=f(t) y=k →例題167, IA115 2 4 4°= (22)*= (2) 2 2x+2 = 2.22 = 4.2x これらのことは, グラ フからも明らかである。 t=2 O 1対1 x 10 2 4 t (もとの方程式の実数解xの個数)=(f(t)=kの正解tの個数) 20個 1個 2個 1個 とくに, k=4,k=0 の とき共有点は1個である ことに注意する。 Pointh 方程式f(t)=kの実数解の個数 例題169 では,2" tと置き換えたが,正の数の値とxの値は1対1に対応するから, y=f(t)(t> 0) と y=kの共有点の個数がそのままもとの方程式 ① の実数解の個数 となる。 =(y=f(t) (t> 0) と y = k の共有点の個数) 4章 4 指数関数

回答募集中 回答数: 0
1/2