学年

教科

質問の種類

数学 高校生

(2)で(1)の不等式をどう生かしたのか、 解説の一連の不等式の流れがよくわかりません。

14 不等式の証明/拡張した形 (ア) (1) yが実数のとき, 2 (2) a, b, c が実数のとき, x+y\2 であることを証明せよ. であることを証明せよ。 a²+26² + c² = (a+b+c)². (イ) (1) ||<1, y|<1のとき, zy+1>æ+yを証明しなさい。 (立命館大文系) (2)また,(1)を用いて,|x|<1,|y|<1,|z|<1のとき,ry+2+y+zを証明しなさい。 (1)を活用する (岐阜経済大) (2) が (1) を拡張したような形の式を証明するときは (1) を利用して(2)を示 すことをまず考えよう. 本間 (ア)の場合,226262(イ)の場合, zyz(ry)zとして,(1)に結び つける. 2+2btc 解答 4 2 (ア) (1) (左辺) (右辺)= = {2(x²+ y²)-(x+y)²)=(xy)²≥0 1/2++ 46+20) となるから, 証明された. (2) (1)の不等式を用いると, b2+c2 (左辺)= ・+ 2 2 2 1)= 1½ (a² + b² + b² + c² ) = {(a+b)² + (b+c)"} (1)の不等式は, 02+02 0+2 2 2 ということ. a+b b+c + なお, (2) は, 平方完成で直接 a+b 2 2 a+2b+c I= y= 2 4 2' (1)を利用 (イ) (1) (左辺) - (右辺) =ry-x-y+1 =(x-1)(y-10 (x < 1, y<1だから) 示すこともできる。 16 { (左辺) (右辺)} =4(α2+262+c2)-(a+2b+c)2 =3a2+462+3c2 --4ab-4bc-2ca =462-4(a+c) b b+cとして 2 となるから, 証明された. +3a2-2ac+3c2 (2) w=xyとおくと, |x| <1,|y|<1により, |w|<1である。 よって, =4(6-a+c)²+ +2(a-c)2≥O 2 (1)を用いると,wz+1>w+z :.xyz +1>xy+z 各辺に1を加え, yz+2> (xy+1)+z 右辺に (1) を使い, ryz+2>(xy+1)+z>(x+y+z となるから, 証明された. 14 演習題 (解答はp.29) (ア) p. 9. rをいずれも正数とする. (1) XY-X-Y +1 を因数分解しなさい。 HENDER BIG (2)2+2-22-1の大小を比較しなさい . (3)2 +2 +2'320+9+r-1の大小を比較しなさい。 (イ) 次の(1),(2) を証明せよ. (龍谷大文系) (1)とき I y 1+x 1+y (2) すべての実数a,bについて, la+bl 1+a+b |a|+|6| 1+|a|+|6| (岐阜聖徳学園大) (ア) (3)では、 2D+g+r=2(D+q)+ と見る。 (イ)一般に. |a|+|0|≧|a+01 が成り立つ。 21

回答募集中 回答数: 0
数学 高校生

この黄色の部分ってどうなってるんですか? なんで答えは、a^2-bなんですか?

5章 28 指数の拡張 00 南学院大 ] -2)² 1, 4~6 b ダメ! る。 える。 5130 基本内 170 指数の計算式の値 a>0,60とする。 次の式を計算せよ。 (a+b)(a-√b)(a+√a²b+√√b²) (a+b) (a+b)(ab) a>0, astas = √7 のとき,a+αの値を求めよ。 reto (1) おき換えを利用すると, 展開の公式 が使えることがわかる。 (ア)a=A,/6=B とおくと (A+B)(A-B)(A'+A2B2+B`) =(A2-B2)(A+A°B2+B^) =(A2)-(B2) (イ)=A, b1=Bとおくと ←公式 (x+y)(x-y)=x²-y2 [(2) 東京経大] ←公式 (x-y) (x2+xy+y2)=x-y3 (A2+B2)(A+B) (A-B) 基本169 (2) a=A, a 13B とおくと a+α '=A3+B3, Balass=a1=d=1 よって, A+B=√7,AB=1のとき,A3+B (対称式) の値を求める問題である。 →A'+B°=(A+B)-3AB(A+B) を利用して計算。 CHART (a)+(a)の値 基本対称式の利用 a・a=1がカギ (1) (♬) (¾√a+√b)(¾√ a−√b)(¾√ aª +¾√ a²¯ +3√b²) =(ya)(2/6)=a-b ={(a)-(26)}}(d+3a2b+362 利用。 =(a²-)((a² )² + √ a² · √√b + (3√5)²} えら の場 表す (1) (a+b)(a+b¯½½) (a−b¯) =(a^2+6-12)(a1-6-12) =(d)-(6-1)=a-b- で =(ai+6-1){ (at)-(6-1)^2} (2) a+a¯¹=(a³)³+(a¯³½³)³ (76 =(a+a)³-3a a¯³(a³+a¯³) =(√7)-3・1・√7=4√7 275 ◄(A+B)(A-B)=A²-B² ◄(√)²=√a² (5)=√√3 (1) (A+B)(A+B)(A−B) =(A2+B2)(A2-B2) =(A2)-(B2)2 a-1でもよい。 A' + B3 =(A+B)-3AB(A+B) [] $170 (1)次の式を計算せよ。ただし,a>0,b>0 とする。 (2+1/3)(22-23) (√2+√3) (1) (a+b)²+(ab)² (15) (a−b½) (a+b) (a+ab+b³) (2)xときxxxxの値をそれぞれ求めよ。

未解決 回答数: 0
数学 高校生

191.2 記述(解き方)はこれでも問題ないですよね?

存在せず 必要条件 求める。 に、式を変 牛。 条件である -a-l ( 極限値)= なα, bのも ら -fla で、 きロー! じものにする 基本例題191 導関数の計算 (1) ... 定義, (x")'=nx-1 次の関数を微分せよ。 ただし, (1) (2) は導関数の定義に従って微分せよ。 (1+xS) 1 0のとき といって しては (1)y=x2+4x (3)_y=4x³—x²-3x+5 解答 指針 (1), (2) 導関数の定義 f'(x)=limf(x+h) f(x) h IJNS0 - (3) (4)次の公式や性質を使って, 導関数を求める。 (n は正の整数,k,lは定数) (r")=nx"-1 特に (定数)' = 0 {kf(x)+lg(x)}'=kf'(x)+lg'(x) (1)y'=lim- h→0 =lim =lim h→0 {(x+h)²+4(x+h)}-(x2+4x) h 1 x+h →08305+ (x+h)2-x2+4(x+h)-4x h =2x+4 y'=lim 2hx+h²+4h 1 h=lim(2x+h+4) x-(x+h). (x+h)x -h 1 h-ol (x+h)x h SxO+SI- =lim (2) b=-2 -1 条件である。 (3) y'=(4x-x-3x+5)、=4(x)(x²)、-3(x)+(5)、 h→0 (x+h)x となり、上の結果と一致する。 y= © 191 (1) y=x²-3x+1 (3) (4)y=-3x+2x3-5x²+7 (8+xs) (e+xs-x)=x -h (x+h)x +₁-1= 11.01+2とも =4・3x²-2x-3・1=12x²-2x-3)(1)g=11 (4) y'=(-3x+2x3-5x²+7)'=-3(x*)'+2(x²)、-5(x²)+(7)、 =-3.4x3+2・3x²-5・2x=-12x+6x²-10x 11r³+5r²-2x+1 であるから 1 を利用して計算。 1 x² p.296 基本事項 ③~5 f(x)=x2+4xとすると f(x+h) =(x+h)2+4(x+h) 項をうまく組み合わせて, 分子を計算する。 FON 導関数の定義式の分子 f(x+h)-f(x) を先に計算している。 検討x”の微分についての指数の拡張 STE p.296 基本事項 ④ において、(x)=x(nは正の整数)とあるが,nは正の整数に限らず, 負の整数や有理数であっても、この公式は成り立つ (詳しくは数学Ⅲで学習する)。 例えば、上の例題 (2) については, n=-1として, 公式(x")'=nx-1 を用いると ( ¹² ) = (x-¹) = − 1 ·x¯-¹-¹=-x^²=- <{kf(x)+lg(x)}、 =kf'(x)+lg'(x) <(r")=nx"-1 (定数)' = 0 練習次の関数を微分せよ。 ただし, (1), (2) は導関数の定義に従って微分せよ。 (2) y=√x (4) y=2x^-3x+7:0-9 (8) 301 6章 34 微分係数と導関数

未解決 回答数: 1
数学 高校生

この問題は解説みたいに図を書かないと解けませんか?

y とx軸の正の向 等しい。 注目 tan βはそれぞれ ②の傾きに一 角方程式を解く。 ■ 題 142 と同様) "ならば、 : 180°-(α-B ) 頃きは と同じで 1 する。 of > 148 三角比を含む不等式 (1) 例題 重要 10°≧0≦180°のとき, 次の不等式を満たす0の値の範囲を求めよ。 1 (2) cos 0 ≤ 2 (3) tan 0<√3 (1) sine> A (1, 0) とする。 1 √√2 指針 三角比を含む不等式は, 三角比を含む方程式 (p.235, 236 基本例題 141,142) 同様, 原点を中心とする半径1の半円を利用して解く。 ① 半円の図をかいて,不等号を=とおいた三角比を含む方程式を解く。 [②2] それぞれ次の座標に着目して,不等式の解を求める。 の不等式 COS A の不等式 tan 0 の不等式 CHART 三角比を含む不等式の解法 まず 解答 (1) sin= 解答 (1) 図, 半円上の点Pのy座標 解答 (2) 半円上の点Pのx座標 図で, 解答 (3) 図, 直線x=1上の点Tのy座標 = 5 を解くと 0=30°, 150° 半径1の半円に対して, x軸に平行な直線y=kを上下 に動かし,この直線と半円との共有点Pのy座標kが ・基本 141 142 演習 151 、 1 2 より大きくなるような ∠AOP の範囲が求める 0 の値の範囲である。 よって 30°< 0 <150° (2) cos0= 左を解くと 0=45° bai 半径1の半円に対して, y軸に平行な直線x=k を左右 に動かし、この直線と半円との共有点Pのx座標kが [1/12 以下になるような∠AOP の範囲が,求めるもの 値の範囲である。 よって 45°≤0≤180° (3) tan0=√3 を解くと 0=60° 半径1の半円周上の点Pに対して,直線OP を原点を 中心として回転させたとき、直線OP と直線x=1 と の共有点のy座標が3より小さくなるような ∠AOP の範囲が, 求める 0の値の範囲である。 よって 0°≤0<60°, 90°<0≤180° 021 注意 (3) tan0については,990° であることに注意する。 また、上の解答では詳しく書いているが、慣れてきたら,練習 148 の解答のように簡単に答えてもよい (解答編 p.146 参照)。 とおいた方程式を解く 0000 #y -1 練習 0° 180° のとき, 次の不等式を満たす0の値の範囲を求めよ。 A+170 9148 (1) -1/ p. 150° -1 k O P yA 0 y X 0 |√3 (3) tan0>-1 TO 30° 60° P 1 459 A 1 1x √√2 20 A T A 1x 1 三角比の拡張 lated Tm 243 1 x 4章 4

未解決 回答数: 0
1/13