学年

教科

質問の種類

数学 高校生

この、速度の求め方はなぜ微分を使うんですか? すみません、全然分からなくて💦

** a 入する。 では, 無線も (2) B 201 ある。 運動と微分 式への応用 **** 時刻における点Pの速度および、点Pが運動の向きを変 える時刻を求めよ. 半径1cmの球形の風船があり、 空気を入れはじめてから、半径に 0.5cm/sの割合で増加しているという.4秒後の体積の増加する。 度を求めよ. 「刻における座標s が s=f(t) のとき 時刻 方 (1) 速度に関する問題である。 直線上の動点Pの時 ds dt における速度はv=f'(t) 速さは v また、運動の向きが変わる速度の符号が変わる (2)変化率に関する問題である。 変化する量Vが時刻tの関数で、V=f(t) のとき dV=f'(t) (時刻 t における)変化率 dt 球の体積Vをtを用いて表すとよい。 (1)時刻 t における点Pの速度を”とすると、このと きの座標は,s=-6f2+9t-2 であるから, ds S=3t-12t+9=3(t-1)(t-3) v=- dt よって、 速度は3t-12t+9 時間 位置 速度 tについて微分する. 点Pが運動の向きを変え るのは、速度vの符号が変 わるときであるから,右の 表より, t=1,3 t 1 3 v 0 0 (2) t秒後の半径をrcm, 体積をVcm とすると, r=1+0.5t より 4 V=1/22/12(1+0.5t) = (21) dV πC したがって, dt 6 dV t=4 のとき, dt よって、増加する速度は, 6xxan 3(2+1)²+1=72 (2+1)² (2+4)=18 18cm3/s 球の体積V=132 最初の半径が1cmで 0.5cm/sの割合で増加 1+0.5t =1+1/21=1/2(2+1) [{f(x)}")' ={f(x)}^-'.f'(x) 第6章 Focus 時刻 t とともに変化する位置や量は、時刻 t で微分して扱う 練習 201 ** (1) 直線上の動点Pの時刻における座標 s は, s =f-9t+15t-6である。 時刻における点Pの速度および、点Pが運動の向きを変える時刻を求め 主面積の増加する速度を求めよ.

未解決 回答数: 1
1/13