学年

教科

質問の種類

数学 高校生

(2)がよく分かりません💦 どうして2と5が出てくるんですか?

Think 例題 276 循環小数法(2) ) 4 整数の性質の活用 581 6桁の循環節をもつ循環小数 A=0abcdef を3倍すると, 6桁 * * * * 循環節をもつ循環小数 0.bcdefa になるような最小のAを求めよ. n 101 (2) 3 6 1より大きくより小さい分数が有限小数になるような正の 整数nをすべて求め 考え方 (1) 循環小数Aを10倍すると, a,bcdefa となる。 14=0.abcdef abcdef abcdef...... 10A a.bcdefa bcdefa bcdefa...... m n こうな数のときかを考える. (p.580 解説参照) (2) 分数が有限小数になるのは,既約分数に直したときの分母の素因数がどのよ (1)条件より また, 3A=0.bcdefa 10A a.bcdefabcdef.... (1)これより, 10A-3A を計算して これら10A=a.bcdefabcdef・・ T =) 3A=0.bcdefabcdef 7A=a したがっ したがって, Am① 循環節が消えるように Aを10倍する。 10A と3A の小数点以 下が同じになる. 合 ここで,0<A<1,0<3A<1 より <A</1/3Aの値の範囲 ① より 01/13 したがって, <a< ①より<</ aは整数 (0≦a≦)より,a=1,2s) よってこのうち、 最小の循環小数は α=1のときみ で、 A== 0.142857 7 63 (2)1/13より。 322 8<n<18 3n 4 3333333 33333333 分数を小数で表したとき, 有限小数になるのは,既 約分数に直したときの分母が2と5以外に素因数を もたない場合に限られる方から小さい方を引くと 8<<18 の範囲の正の整数nでこの条件に合う のは,分子が6,すなわち, 2×3であることから, 分 22×3-12, 3×5-15, 2-16 6 3 6 Focus 館 15 16 5 12 2 人 2 6 3 = 5' 16 15 8 第9章 ← 既約分数の分母の素因数が25のみ 既約分数が有限小数になる 276 このとき、もとの自然数のうち最小のものを求めよ。 m ある自然数の逆数を小数で表すと3桁の循環節をもつ循環小数0.abc となる.

回答募集中 回答数: 0
数学 高校生

125(2)の abcdの計算の仕方がよくわかりません 解説よろしくお願いします!

□125 腐食連鎖 次の文章を読み、以下の問いに答えよ。 植物が太陽エネルギーを用いて大気中の炭素から合成した有機物の一部は、植物を 直接とする植食動物や、さらにこの動物を食べる肉食動物の生命活動を支えるエネ 直接に食う食物連鎖の流れをたどる。一方, 植物が合成した有機物の一部は、枯れ ルギーとして消費されながら、生食連鎖(植物生体を出発点とし、生きている生物を 業や枯れ枝などとして地表に堆積し、動物の遺体や排出物とともに、微生物などが分 解する腐食連鎖に取り込まれる。 このように、生態系を構成するそれぞれの栄養段階 をつなぐ食物連鎖は、生食連鎖と腐食速鎖から成り立っている。 下図は、これらの を模式的に示したものである。 生食連鎖 純生産量 総生産量 (ア) (イ) 摂食 (ウ) 成長量 (生産者) 生産量 (エ) (オ) 摂食 成長量 (カ) 枯 不消化排出量 死 量 (消費者) 腐食連鎖 (分解者) ある照葉樹林では,総生産量の70%が生産者自身の(ア)として消費されていた。 また1ha あたりの1年間の(イ)は60kg, 同じく枯死量は10800kg,現存量の 増加量 (成長量) は 3540kgであった。 この森林で1年間に生産者自身の (ア)とし て消費された有機物の量は,1ha あたり (a) kg, 純生産量は(b)kgであり, この純生産量のうち植食動物に摂取される量は (c) %である。 また、この森林に おいて生産者から腐食連鎖に流れる有機物の量は, 生食連鎖に流れる有機物の量の (d) 倍である。 (1) 図のア~カにあてはまる適切な語句を,下の語群からそれぞれ選べ。ただし、同 じ語句を何回選んでもよい。 また,図のアイは文中のア, イと対応している 図中の枠の面積は実際の値とは異なる。 〔語群] 総生産量, 純生産量, 光合成量,呼吸量, 成長量, 被食量, 同化量, 死亡量, 捕食量, 現存量 (2)図を参考にして、文中のadに適切な数値を入れ、文章を完成させよ。 ただし、 答えに小数を含む場合は,答えを四捨五入して小数点以下第1位まで書け。 (京都大)

回答募集中 回答数: 0
数学 高校生

(2)⑭についての質問です。 答えがわかっていたので、答えに合わせるように計算を行いました。 その時の計算式で Xの分散を小数第5位(0.81142)まで書いて計算しないといけない理由が分かりません。 教えて欲しいです。

例題2 [データの変換] 3 かし 温度の単位として, 損氏(℃)のほかに華氏 (°F)があり、℃とが同 じ温度を表すときのxとの関係は,,v=1.8c+32であることが知られて いる。 日本のある都市において, 1週間の最高気温を測定したデータが次の表 のようであった。 このとき、 次の値を求めよ。 ただし, 平均値は四捨五入 して小数第1位まで, 分散は四捨五入して小数第2位まで求めよ。 最高気温(℃) 8.5 9.2 10.8 8.2 日 月 火 水 木 金 土 8.7 7.9 8.3 (1) 最高気温の平均値と分散 ヒント 共分 Sky の偏差をgの偏差の 私の平均値 (2) 華氏 (°F) で表したときの最高気温の平均値と分散 解答 r= Sty Sx3y (1) 最高気温を表す変量を℃とすると, xの平均値は IC == // (8.5+9.2+10.8+8.2+8.7+7.9+8.3)=Dg.8 (℃) であるから, x-xと (x-x)の値は下の表のようになる。 8.5 9.2 10.8 8.2 8.7 ◆平均値 =(エエエッ 7.9 8.3 x-x -0.3 0.4 2.0 -0.6 ② -0.9 3 (xx) 20.09 0.16 4.00 0.36 ④ 0.81 5 分散 s よって,x の分散szは,s2=1/2x65,68 S = 00.8114285.7.... ²= {(x1−x)²+(x2-x)² n より, 四捨五入すると,08 +…+(x_x)}} (2) 華氏で表したときの最高気温の変量を°Fとすると, xとyに y=1.8c+32の関係があるから, yの平均値y は 9 y= 1-8 +1032 147-84 (°F) y=ax+bのとき 98.8 y=ax+b より、四捨五入すると, 華氏で表したときの平均値は,1247.8 F また,yの分散 sy2は 2 13 1.8 Xs2=14 より、四捨五入すると、華氏で表したときの分散は12,63 y=ax+bのとき s₁²=a²s₁² →1.8×1.8×0.81142 = 2.6290- 類題2 次の変量xのデータについて, u=- 2 変量をuとする。 x-50 とおいて得られる新しい x:64 52 54 77 60 68 57 65 59 74 次の値を求めよ。 ただし, 必要であれば, 61=7.8 として計算せよ。 (1)の平均値と標準偏差 (2)の平均値と標準偏差 例題2の答 1 8.8 2 -0.1 (30.54 0.01 15 0.25 65.68 70.811... 8 0.81 9 1.8 10 32 11 47.84 12 47.8 13 1.8 14 2.629・・・ 15 2.63 145

未解決 回答数: 1
数学 高校生

この問題答え見てもよくわかりません

精講 133 計算の工夫 次のデータは5人のハンドボール投げの記録である。 28,α,24,b,c (単位はm)+01+819~ このデータでは、次の4つの性質が成りたっている. (ア) 24 <a<28<b<c (イ) 第3四分位数は33m (ウ) 平均値は 29m (エ) 分散は 14 このとき, a, b, c の値を求めよ. 文字が3つありますので,第3四分位数, 平均値,分散の定義に従 って等式を3つつくり、連立方程式を解けばよいだけですが,数値 が大きいので,計算まちがいが心配です. そこで,平均値がわかっているので,すべてのデータから平均値 29m を引 いた新しいデータを考えることで,計算量を減らす工夫を学びます。 解答 与えられたデータから29m をひいた数を 新しいデータとして考える. すなわち, 小さい順に, -5, a-29, -1, 6-29, c-29 を考える. α'=a-29,b'=b-29, c′'=c-29 とおく . (イ)より, b+c=33 だから,b+c=66 2 : b'+c'=8. ...... (ウ)より,24+α+28+b+c=29・5 ∴a+b+c=29・5-52 よって, a'+B'+c'+29・3=29・5-52 a'+b'+c′=29・2-52 ③) 26-166'+64-40=0 '-86'+12=0 (b'-2)(b'-6)=0 6'2 または 6 6'=2のとき,c=6 B'=6 のとき, c'=2であるが, =44 bc より, B' <c' だから,このときは不適. よって, '=2,'=6 以上のことより, a=27,6=31,c=35 注もし、元のデータのまま解答をつくると、 でき上がる 6+c=66,a+b+c=93, (a-29)2+(6-29)^2+(c-29)²= この時点で, a'=a-29,6'=6-29, c'=c-29 とおきた せん. 演習問題 133 視力検査の数値のように,小数点以下を含むデー 仕方は, 137で学びます. G 次のデータは5人の体重測定の結果である 57,64, a,b,c (単位はkg) このデータに対して、次の4つの性質が (ア) 57 <a<b<64 <c (イ) データの範囲は 10kg (ウ) データの平均値は 62kg (エ) 11.6

回答募集中 回答数: 0
1/15