学年

教科

質問の種類

数学 高校生

(2)の問いについてです。 定点となるMを右の写真の解のような形で表してはいけないのでしょうか。ダメな理由も教えていただけるとありがたいです

Check 例題 360 直線のベクトル方程式(1)円3 07*** (1) 異なる2点A(a),B() に対して, p=(1-t)+t6 (1) 表される図形はどのような図形か. (2) 3点A(a),B(b),C(c) を頂点とする △ABC がある. 辺ACを 21 に内分する点M () を通り,辺ABに平行な直線のベクトル 方程式をa, 6, こと媒介変数を用いて表せ 考え方 (1) ja+(-a) と変形すると,点P(j) は点Aを通り, ABに平行な直線上にあ ることがわかる (2)M(m)を通り、ABに平行な直線のベクトル方程式は,p=m+tAB と表せる。 解答 (1) = (1-1)+16=a+1(-a) 点P()は,点Aを通り b=a+1(6-9) 1 変化する 定点 A1=0 6-d=ABに平行な直線, すなわち直線AB上を動き, b-a a t=0 のとき, = より, 点Aの位置 t=1 のとき, = より,点Bの位置 t=1 B tが0から1まで変 わるとき、点Pは点 にある。 よって、求める図形は, 線分AB である. AからABの向き (2) 求める直線上の任意の点をP() とする.点M(㎡) に, Bまで動く。 a+2c は,辺ACを2:1 に内分する点だから, m= 3 求める直線は辺AB と平行だから,その方向ベクト ルは, AB (S-C A(a) よって,=m+tAB=+2c+(-a) P(p) (M(m) 3 すなわち, = (1/31) a1+1+1/2/30 B(b) c(c) AB JS Focus 点A(a)を通り, d に平行な直線のベクトル方程式は, p=a+td 2点A(a),B(b) を通る直線のベクトル方程式は, b=(1-t)a+tb とくに, t のとき, 線分AB を表す 足して1

未解決 回答数: 0
数学 高校生

かっこ2のアで1-tとtを解答と逆にしてもいいと思いやってたのですが答えが合わないので計算途中をお願いしたいですよ

する(s, t |基本例題 34 直線のベクトル方程式, 媒介変数表示 00000 (1) 3点A(a),B(b),C(c) を頂点とする △ABC がある。 辺AB を2:3に内 分する点を通り,辺 ACに平行な直線のベクトル方程式を求めよ。 指針 2点(3,2) (2,-4) を通る直線の方程式を媒介変数を用いて表せ。 (イ)(ア)で求めた直線の方程式を, tを消去した形で表せ。 (1)点A(a)を通り,方向ベクトルの直線のベクトル方程式は p=a+td 40 67 1 p.65 基本事項 1 章 ここでは,Mを定点, AC を方向ベクトルとみて、この式にあてはめる (結果はa, もこおよび媒介変数を含む式となる)。 (2)2点A(a),B(b) を通る直線のベクトル方程式は b=(1-t)a+tb D=(x,y), a= (-3, 2) = (2,-4) とみて,これを成分で表す。 (1)直線上の任意の点をP(D) とし, tを媒介変数とする。 3a+26 A(a) ⑤ ベクトル方程式 解答 M (m) とすると m= P(p) 5 2 辺 ACに平行な直線の方向ベクトルはACであるから b=m+tAC=30+26+t(ca) M(m) 3 c-a t=0 B(b) C(c) 5 t=19 整理して b = (1/2/3 - ta1+1/26+1ctは媒介変数) 3a+26 +t(c-a) 5 でもよい。 LS) (2)2点(-322-4 を通る直線上の任意の点 の座標 (x,y) とすると (x,y)=(1-t)(-3, 2)+t(2,-4) =(-3(1-t)+2t, 2(1-t)-4t) =(5t-3, -6t+2) P(x, y), A(-3, 2), B(2,-4) とすると, OP= (1-t)OA+tOB と同じこと (Oは原点)。 各成分を比較。 x=5t-3 よって (tは媒介変数) ② とする。x=31 ① ×6+② ×5 から 6x+5y+8=0 tを消去。 ly=-6t+2 (イ) x=5t-3. ①,y=-6t+2 参考 数学IIの問題として, (2) を解くと, 2点 (-3, 2) (2, -4) を通る直線の方程式! -4-2 2+3 y-2= (x+3) から 6x+5y+8=0 練習 (1) △ABCにおいて, A(a),B(b),C(c)とする。 M を辺BC の中点とする 34 直線AMのベクトル方程式を求めよ。 博介変数で表された式, tを消去

回答募集中 回答数: 0
数学 高校生

赤線を引いたところが数学的になぜ言えるのか分かりません。感覚的には分かるのですが… また、x軸、y軸、y=x、原点対称の媒介変数表示された曲線は赤線のことが言えるのでしょうか。

例題 C2.78 いろいろな曲線(2) 3 媒介変数表示 (517) **** x=cos't tを媒介変数とするとき, 曲線 ly=sin't の概形をかけ. [考え方 例題 C2.77 で求めたアステロイドである。 対称性を利用すると、右のようにOSIST の範囲 概形を調べれば、全体をかくことができる. yy=x/ cost, sint の周期は2mであるから, 0≦t≦2 の範囲で 解答 考える.t=0,0,0, 2-0 に対応する点をそれぞ P,Q,R, S とし,P(x,y) とすると、sinx, c030 x=cos0y=sin'0 cos(0)=-cos'0=-x, sin (n-0)=sin0=y したがって,Q(x, y) より,この曲線はy軸に関して対称 cos(n+0)=-cos0=-x, sin(n+0)=-sin'0=-y したがって,R(-x, -y)より,この曲線は原点に関して対称 cOS (2-0)=cos' Q=x, sin (2-0)=-sin0=-y したがって, S(x, -y) より,この曲線はx軸に関して対称 4 まず対称性を調べ P 0 R さらに,t= .0 に対応する点をP(x, y) とすると, x 軸対称 *y 軸対称 π 2 =cos (46)=sin {(10)}= sin(+0) 4 4 y=sin (6) =cos -6)=cos π 2 (4-0)} =cos (+0) 原点対称 *y=x に関して 称 の4つの対称性が したがって,t=7 +0 に対応する点TはT(y.x) となる.かる. すなわち、この曲線は直線 y=x に関して対称である。 T よって、この曲線の≦ts の範囲の概形を調べる. y y=x/ π π t0. 6 3√3 v2 81-8 x14 y0 > したがって、上の表より, 相当する 24点を定めると右のようになる。 よって、Ot2 における曲線の 概形は右の図のようになる. 4 42 12/ TC 4 22 260 √2 2 40 0 44 OPの長さを求め と次のようになる t 0 √7 OPの長さ 1 4 1671 練習 [x=sint の概形をかけ、 •p.C2-170 C2.78] を媒介変数とするとき、曲線 = sin2t ****

未解決 回答数: 0
数学 高校生

√1+f(x)'の公式に当てはめて解いたのですが、回答の答えにはなりませんでした。これでは解けないのでしょうか?教えて頂きたいです。よろしくお願いします。

(5)) 2sin/128-tcos/1/2 (s)tsin/1/2 1 (6) (L) 12 (6XL)*+* 2 ■解説 ≪媒介変数表示された曲線の形状と長さおよび面積≫ =0とおくと, sin00 (π<< より 00 dy sin O (1)・(2) dx 1 + cos 0 このときy=0である。 また, -π<< πにおいて よって, 曲線Cは点 (0,0)においてx軸に接する。(→(あ) (レ dx de から,g(-π) <x<g(x)より =1+cos0 >0よりx=g(0) は単調増加だ dy さらに, de x=(→(う)(え)) -=h' (0)=sin0より,y=h(0) の増減表は次のようになる。 0≦y<2 (→(お), (カ)) 1 + 0 7 これより (020g+1) なお, 曲線Cの概形は次のようになる。 O 2 2 0.200 大阪 dy d0-> 2cos2d0-4sin-4sin (4) Pr(t+sint, 1-cost) 0=1のとき 方程式は sint = 1+cost y-(1-cost) - do (-4431) sint dt 1+cost であるから、もの (x-(t+sint)) (0<K<x) ここで,y=0とおくと, (1-cos't) =sintlx-(1+sin()), sint*0より よって -(1-cos³t) sint +(t+sint) =-sint+ (t+ sint) =t (→()) Qi(t. 0) =OP-OQ Q.P= = (t+sint, 1-cost) - (t, 0) = (sint, 1-cost) 2. =(2sin/12 cos/122sin2-12) = 2 sin 27 (cos 27. sin 172) ...... ① 0 (-π) 0 (π) dy nie. 0 do Ob y 2 となるので、Q.P がx軸の正の向きとなす角は 12 ラジアン( 10203-1 0 (-π) ... 20 x 一π x y 2 π (π) 0 V 0 V π 2 とする。また,P, Q 接線がそれぞれPi, Q 接線に移動した (5) 回転する前のC上の点Pがx軸との接点になったときの曲線をC とする。このとき t OP' = L (t) = 4 sin 2 dx (3) + do (d)² = (1 + cos 0)² + (sin 0) 2 =2(1+cos0)=4cos' 0≧≦t<zにおいてcos->0であるから 20 8-2 ①よりP/Q=PQ=2sin であるので OQ=OP-P/Q=4sin/2-2sin/2 = 2 sin/20 また,Q,R, OQtであることと,(4)の結果より

回答募集中 回答数: 0
1/34