学年

教科

質問の種類

数学 高校生

答えがこれであっているか教えてください🙇

51 (木) まずは小問集合。 大事な問題は繰り返しやって、 自信をつけていきましょう。 次の を正しくうめよ。 (1) 不等式3(x-2) <2x-5…① の解は(ア)である。 また,不等式①を満たすことは,x<0であるための(イ)。 (イ)に当てはまるものを,下の①~④のうちから1つ選べ。 ① 必要十分条件である ② 必要条件であるが, 十分条件ではない 十分条件であるが, 必要条件ではない ④ 必要条件でも十分条件でもない (2) 次のデータは、あるクラス10人の数学の小テストである。 7,5,8,6,7,8,10,4,3,9 このとき,中央値は (ウ) であり,第1四分位数は(エ)である。 (3)男子2人、女子5人, 計7人の生徒がいる。 この中から委員3人を選ぶ 方法は、全部で (オ) 通りあり、このうち少なくとも1人は男子である 選び方は、全部で (カ) 通りある。 (4) (2x-y) の展開式におけるxyの係数は (キ)である。 また、 (x+2y-3z)の展開式における xy'z の係数は (ク)である。 (1) 3(x-2)<2x-5 3xc-62x-5 20 6.5.4×80303 (4)6G(2x)(-\パー(54 xC1(P) ③- ③ -(1) キ (2) 1,3,4,5,6,7,7,9,10 中央値 6.5-) # 第1四分位数4(土) 4. -1609343 プリシの係数は160(t) また、{(x+2%)-3/24の展開式における 窓の係数は、 4C1=4 (x+2g)におけるxyの係数は 3C2.2°=3×4 (3)7C3 7.65 =35通り(オ) また、少なくとも1人は男子なのは 38.5 6C2 15通り(カ) 入り サ サ =12. (xy2zの係数は4×12=2817

回答募集中 回答数: 0
数学 高校生

数I データの分析について 第3四分位数が3番目だとするのが分かりません

例題11 箱 右の図は、2つの漁港A. B のある年における各月の水 揚げ量 (kg) の箱ひげ図である。 次の①~④のうち、この 箱ひげ図と矛盾するものを1つ選べ。 ただし, 漁港 A, Bとも、同じ水揚げ量の月はなかったものとする。 ① 水揚げ量の中央値は, 漁港Bより漁港Aの方が小さい。 ② 水揚げ量の範囲は、 漁港Aより漁港Bの方が大きい。 漁港A 漁港B 100 200 300 ③漁港Aで3番目に水揚げ量が多かった月の水揚げ量は400kg 以上である。 ④ 漁港Bで200kg未満の水揚げ量の月は4か月あった。 考え方 最大値、最小値,四分位数を読み取り, 正誤を判断する 正誤を判断する問題では,正確な値まで読み取る必要のない問題もある。 選択肢 ①〜④に関する必要な情報を抜き出して, 正誤を判断する。 ポイント ① 正誤を判断 → (解答) 400 500(k [類 東北文化学 ① 漁港Aの中央値 (約280kg) は漁港Bの中央値 (約305kg) より小さいから、正 ② 漁港 A, B のおおよその範囲はそれぞれ 420-100=320 (kg), 500-150=35 よって, 漁港Aより漁港Bの方が範囲が大きいから,正しい。 ③漁港Aの第3四分位数は400kg であるから, 漁港Aで3番目に水揚げ量が多 月の水揚げ量は400kg以上であり, 正しい。 ④漁港Bの第1四分位数は200kgであり、 同じ水揚げ量の月はない。 よって, 200kg未満の水揚げ量の月は3か月であるから, 矛盾する。 したがって, 矛盾するものは 4 答

回答募集中 回答数: 0
数学 高校生

2番わかんないです回答見ても

礎問 136 代表値の変化 (データの追加 |精講 10人の生徒が10点満点のテストを受けた. 得点の低い順に並べたデータを XC1, 2, ..., 10 とする. 最低点の生徒は合格点に達しなかったので,翌日追試を受けて 合格点をとった。追試前の平均値,分散をそれぞれ,S2,追試 後の平均値,分散をそれぞれ,y,s,” とする. 次の問いに答えよ。 すべて正な (1)との大小を判断せよ. (2)=7s=3.4 とする. 追試を受けた生徒の得点が3点から5点になったときと Sy2 の値を求めよ. データに変更があると,代表値など (平均値,分散,四分位数など) も変化するのが普通ですが,変化の様子を(1)のように,大きくなる 小さくなる,という雰囲気に近い観点で判断する場合と,(2)のよう に,値の変化で判断する場合の2つがあります. どちらも大切な判断法です。 (1)では,箱ひげ図や, 定義の式のイメージが有効で, (2)では,定義に従ってキチンと計算することが必要です. (1) 最低点だった生徒の得点が増えている ので, 10人分の得点の総和は増える. よって,平均点は追試後の方が高くなる. これらはみxy 定義の式で分母が不変だから 分子の増減を考えている. 注 各四分位数や分散の変化は,これだけの情報では判断できません. (2)追試を受けた生徒の得点が' のとき,''=m+2 x''+x2+…+x10x2+..+10+2 10 10 =x+0.2=7.2 Sy 2 10 12

未解決 回答数: 1
数学 高校生

この問題答え見てもよくわかりません

精講 133 計算の工夫 次のデータは5人のハンドボール投げの記録である。 28,α,24,b,c (単位はm)+01+819~ このデータでは、次の4つの性質が成りたっている. (ア) 24 <a<28<b<c (イ) 第3四分位数は33m (ウ) 平均値は 29m (エ) 分散は 14 このとき, a, b, c の値を求めよ. 文字が3つありますので,第3四分位数, 平均値,分散の定義に従 って等式を3つつくり、連立方程式を解けばよいだけですが,数値 が大きいので,計算まちがいが心配です. そこで,平均値がわかっているので,すべてのデータから平均値 29m を引 いた新しいデータを考えることで,計算量を減らす工夫を学びます。 解答 与えられたデータから29m をひいた数を 新しいデータとして考える. すなわち, 小さい順に, -5, a-29, -1, 6-29, c-29 を考える. α'=a-29,b'=b-29, c′'=c-29 とおく . (イ)より, b+c=33 だから,b+c=66 2 : b'+c'=8. ...... (ウ)より,24+α+28+b+c=29・5 ∴a+b+c=29・5-52 よって, a'+B'+c'+29・3=29・5-52 a'+b'+c′=29・2-52 ③) 26-166'+64-40=0 '-86'+12=0 (b'-2)(b'-6)=0 6'2 または 6 6'=2のとき,c=6 B'=6 のとき, c'=2であるが, =44 bc より, B' <c' だから,このときは不適. よって, '=2,'=6 以上のことより, a=27,6=31,c=35 注もし、元のデータのまま解答をつくると、 でき上がる 6+c=66,a+b+c=93, (a-29)2+(6-29)^2+(c-29)²= この時点で, a'=a-29,6'=6-29, c'=c-29 とおきた せん. 演習問題 133 視力検査の数値のように,小数点以下を含むデー 仕方は, 137で学びます. G 次のデータは5人の体重測定の結果である 57,64, a,b,c (単位はkg) このデータに対して、次の4つの性質が (ア) 57 <a<b<64 <c (イ) データの範囲は 10kg (ウ) データの平均値は 62kg (エ) 11.6

回答募集中 回答数: 0
1/24