学年

教科

質問の種類

数学 高校生

(3)って6C4×3!だと間違いですか?

異なる6個の宝石がある。 ◯ (1) これらの宝石を机の上で円形に並べる方法は何通りあるか。 X(2)これらの宝石で首飾りを作るとき,何種類の首飾りができるか。 9(3)6個の宝石から4個を取り出し、机の上で円形に並べる方法は何通りあるか。 指針 (1) 机の上で円形に並べるのだから,円順列と考える。 (2) 首飾りは,裏返すと同じものになる。 例えば, p.359 基本事項 重要 19 右の図の並べ方は円順列としては異なるが, 裏 返すと同じものである。このときの順列の個数 は,円順列の場合の半分となる (検討 参照)。 (3) 1列に並べると 6P4 これを回転すると 同じ並べ方となる4通りで割る。 6 3 (3 G 5 いずれの場合も、基本となる順列を考えて、 同じものの個数で割ることがポイントと なる。 CHART 特殊な順列 基本の順列を考え、同じものの個数で割る (1)6個の宝石を机上で円形に並べる方法は 解答の色で塗り(6-1)!=5!=120 (通り)と 6 (2)(1) の並べ方のうち、裏返して一致するものを同じもの と考えて (6-1)! 2=60(種類) 1つのものを固定して他 ものの順列を考えても よい。すなわち, 5個の 宝石を1列に並べる順列 と考えて5!通り (3) 異なる6個から4個取る順列 6P4には, 円順列として一般に, 異なるn個のも は同じものが4通りずつあるから 6P4 = 4 6.5.4.3 4 2=90 (通り) のから個取った円順 P 列の総数は

解決済み 回答数: 1
数学 高校生

数学「順列」の問題です (3)に関しての質問です 写真は上が問題で下が模範解答と解説です ★を書いている次の行からが分かりません なぜ、裏返しても一致しないものは120通りなのに最後の式で2で割るのでしょうか どなたか解説よろしくお願いします

|赤玉5個, 白玉4個、黒玉1個の合計 10個の玉を用意する。 通りある。 (1)10個の玉を1列に並べるとき, その方法は (2) 10個の玉を机の上で円形に並べるとき,その方法は (3) 10個の玉にひもを通してネックレスを作るとき, 通りある。 種類のネックレスができ る。 ただし, ネックレスを裏返して一致するものは、 同じものとみなす。 (1) 赤玉5個, 白玉4個, 黒玉1個の合計10個の玉を1列に並べる方法は 10! = 1260 (通り) 5!4!1! (2) 黒玉1個を固定して, 残り9個の玉を並べると考えて 9! =126(通り) 5!4! (3)(2)の126通りのうち, 裏返すともとの円順列に一致するも のは,黒玉の向かい側に赤玉があり, その2つを通る直線を 軸として, 残りの赤玉4個, 白玉4個が対称に並ぶような円 順列である。 すなわち, 対称軸に関して一方の側に, 赤玉2個, 白玉2個 を並べ, もう一方の側はそれと対称となるように並べればよ 4! 2!2! いから =6(通り) 赤 また, (2) 126通りのうち, 裏返してももとの円順列に一致しないものは |126-6=120 (通り) この120通りの1つ1つに対して, 裏返すと一致するものが他に必ず1つずつある。 よって, ネックレスの種類の総数は 120 6+ = 66 (種類) 2

解決済み 回答数: 1
数学 高校生

画像下の方、線を引っ張ったところで 2で割ってる理由を教えていただきたいです🙇🏻‍♀️

00 382 重要 例題 31 同じものを含む円順列 白玉が4個、黒玉が3個、赤玉が1個あるとする。これらを1列に並べる方法は し, 輪を作る方法は通りある。 ] 通り,円形に並べる方法は通りある。更に、これらの玉にひもを通 [ 近畿 ] 基本 18 重要 19 指針(イ)円形に並べるときは,1つのものを固形の考え方が有効。 ここでは、1個しかない赤玉を固定すると、残りは同じものを含む順列の問題になる。 (ウ)「輪を作る」 とあるから,直ちに じゅず順列=円順列 2 と計算してしまうと、こ の問題ではミスになる。 すべて異なるものなら 「じゅず順列 =円順列÷2」で解決す るが,ここでは, 同じものを含むからうまくいかない。 そこで,次の2パターンに分 ける。 [A] 左右対称形の円順列は、裏返 すと自分自身になるから、 1個と 数える。 [A] [B] うになる。 みかん、り 買うとき、1 があってもよいもの 考え方と解答】粉、 中から5個の果物 れぞれ何個ずつ買 考える。 では、異なるか [B] 左右非対称形の円順列は,裏 返すと同じになるものが2通りず ÷2 つあるから 裏返すと同じ (円順列全体) (対称形) よって (対称形) + 2 8! (ア) =280(通り) 4!3! 解答 含む順列。 内 (イ) 赤玉を固定して考えると, 白玉4個、黒玉3個の順列 1つのものを固定する。 物かごを用意 りの左側には柿 りんごを入れる 0100 000 log このようけ の果物か これは の場所 7! 数に等しいから -=35(通り) 4!3! 7C4=7C3 (ウ)(イ)の35通りのうち、裏返して自分自身と一致するも左右対称形の円順列。 のは,次の [1]~[3]の3通り。 [2] の (の付け方) [3] 図のように、赤玉を一番 上に固定して考えると よい。 また、左右対称形のとき, 赤玉と向かい合う位置に あるものは黒玉であるこ ともポイント。 残りの32通りは左右非 対称形の円順列。 残りの32通りの円順列1つ1つに対して、裏返すと一 致するものが他に必ず1つずつあるから,輪を作る方法 35-3 2 は全部で 3+ =3+16=19 (通り) | (対称形) + (全体) (対称形) 2 (非対称形) =(対称形)+- 2 ④ 31 に糸を通して輪を作る。 (1)輪は何通りあるか。 練習 同じ大きさの赤玉が2個, 青玉が2個, 白玉が2個, 黒玉が1個ある。 これらの玉 (2) 赤玉が隣り合う輪は何通りあるか。

解決済み 回答数: 1
1/40