学年

教科

質問の種類

数学 高校生

汚くて申し訳ないです💦 inf(写真下部)について質問です。 文章の理解はできたのですが、★部分をもう少し具体例で理解したいと思いました。例えばどんなものがあるのか教えていただけませんか?

トを問 4で外接する2円 0, 0' がある。 Aにおける共通接線上 点A の点Bを通る1本の直線が円0と2点C, Dで交わり, B 00000 明せよ。 を通る他の直線が円 0′ と 2点E, F で交わるとする。こ のとき, 4点C, D, E, F は1つの円周上にあることを証 OA OXF p.394,395 基本事項 3. 基本 82 403 CHART & SOLUTION 1つの円周上にあることの証明 方の定理の逆 4点が1 から、「べきの定理の逆」 を利用する方針で考える。 1つの円周上にあることは, 「円周角の定理の逆」, 「内角と対角の和が180°」, 「方べ の定理の逆」のいずれかを利用すれば示せるが,この問題では角度についての情報がな 4点C,D,E,F を通る円をかいてみると, 示すべきことが BC BD BE BF であること が見えてくる。 円0において,方べきの定理から B E ← 接線 BA, 割線 BD ←接線BA, 割線 BF BC・BD=BA2 円 0′において, 方べきの定理から 0 よって BE・BF=BA2 BC・BD=BE・BF ゆえに、方べきの定理の逆から、共 3 10 円と直線、2つの円 4点C,D,E,Fは1つの円周上にある。 に 内 inf 方べきの定理 PA・PB=PC・PD において PA・PB の値をべきという。ここで,円の半径をr とすると, [1] A 右図の [1] のとき PA・PB=PC・PD=(CO+OP)・(QD-QP) =(z+OP)(r-OP)=-QP2 [2] C D OP B B 右図の [2] のときは,同様の計算で PA・PB=OP2-r2 したがって, PA・PBの値は|OP2-2に等しい。OP2は, 点Pが固定されていれば一定の値である。すなわち 定点Pを通る直線が0と2点A,Bで交わるとき, PA・PBの値は常に一定である。 PRACTICE 90 金 円に、円外の点Pから接線 PA, PB を引き, 線分AB と PO の交点を通る円Oの弦 CD を引く。 このとき, 4点P,C, ODは1つの円周上にあることを証明せよ。 ただし, C,Dは P 足理 26 MI D B

回答募集中 回答数: 0
数学 高校生

(2)の問題が回答を見ても頭がこんがらがって理解できません。どのようにしてこの答えの導出になるのか教えてください。

2.OBと1 し 練習問題 5 鋭角三角形ABC がある. 頂点Aから辺BCに下ろした垂線の足をHと D 調講 ■よび さらにHから辺 AB, AC に下ろした垂線の足をそれぞれPQとす A. P, H, Qは同一円周上にあることを示せ. P, B, C, Q は同一円周上にあることを示せ. この問題では,「内接四角形の定理の逆」を使ってみましょう。あ る四角形の「対角の和が180°」であれば,その四角形は円に内接 することがわかります. 練習問題 4(2)で見たように,「対角の和が 180°」であ ることは「ある内角がその“対角の外角” と等しい」ことと同じであることも 頭に入れておくといいでしょう. 313 解答 A (1)∠APH + ∠AQH=90°+90°=180° であるから, A 内接四角形の定理の逆より,四角形APHQはd に内接する.つまり,A,P,H,Q は同一円周上 にある. れ (2)A,P,H,Q は同一円周上にあるので,円周角 B H A の定理より, ∠AQP=∠AHP .....① P 第8章 また,∠AHB=90°∠APH=90°より, ∠AHP=90°-∠BAH=∠ABH ①,②より ∠AQP=∠PBC. 四角形 PBCQ B は,1つの頂点の内角がその 「対角の外角」と等しいので,内接四角形の定 理の逆より,四角形 PBCQ は円に内接する. したがって,P, B, C, Q は 同一円周上にある. コメント (2)は,連想をつなぐことがかなり難しい問題です。こういう問題では,「結 論が成り立つためには何が成り立てばよいか」という方向で考えていくといい でしょう.例えば,「∠BPC= ∠BQC」 が成り立てば円周角の定理の逆が利 用できますし,「∠PQC+∠PBC=180°」 が成り立てば内接四角形の定理の逆 が利用できます.こうしたいくつかの候補のうち、現時点で手にしているもの からたどり着けそうな場所を探すわけです。

回答募集中 回答数: 0
数学 高校生

「シ」が分かりません 緑チャートの問題です 解説お願いしますm(_ _)m

116 17:58 B マイページ 数学 高校生 たり 解決済みにした質問 POINT! 第6章 図形の性質 BQC 質問 重要 例題25 平面図形と三角比 △ABCにおいて, AB=4√2, BC=CA=4 とする。 線分 AC を 1:3に内分す る点をPとし, 3点B, C, P を通る円Sと線分ABの交点のうちBでない方を Q とする。 また,円Sの点Qにおける接線と直線BC の交点をRとする。 このとき,BP=アである。 ここで,線分 BP は円Sの直径であり, I√√ ∠CBQ=イウであるから, CQ= である。 カ また, 直線 BQ と直線 CP が点Aで交わり, 4点 B, C, P, Q は同一円周上にあ るので, AQ=Y である。 よって, BQ= である。 ク サ SCLOE 次に,直線 RQ は円Sの接線であるから, ∠QBR=∠シ である。 よって, AQBRと シは相似である。シに当てはまるものを、次の⑩~③の うちから一つ選べ。 O APQ ス したがって, CR= QR である。 tz また, 直線 RQ は円Sの接線であり, B,Cは点 R を通る直線と円Sの交点であ るから, QR= ソタ チ である。 解答 AB=4√2, BC=CA=4より △ABCは タイムライン ② BRQ 公開ノート 107 線分の長さを求めるとき, 三角比の知識を利用することがある。 40% 4√2 ③ CQR ・三角形の外接円の半径(直径) 正弦定理 (21) - 2辺とその間の角から残り1辺を求める→余弦定理 (22) 進路選び all 35 ? Q&A 編集 7時間前 ( 第3章) 閉じる マイページ

回答募集中 回答数: 0
数学 高校生

「シ」が分かりません 緑チャートの問題です 解説お願いしますm(_ _)m

116 17:58 B マイページ 数学 高校生 たり 解決済みにした質問 POINT! 第6章 図形の性質 BQC 質問 重要 例題25 平面図形と三角比 △ABCにおいて, AB=4√2, BC=CA=4 とする。 線分 AC を 1:3に内分す る点をPとし, 3点B, C, P を通る円Sと線分ABの交点のうちBでない方を Q とする。 また,円Sの点Qにおける接線と直線BC の交点をRとする。 このとき,BP=アである。 ここで,線分 BP は円Sの直径であり, I√√ ∠CBQ=イウであるから, CQ= である。 カ また, 直線 BQ と直線 CP が点Aで交わり, 4点 B, C, P, Q は同一円周上にあ るので, AQ=Y である。 よって, BQ= である。 ク サ SCLOE 次に,直線 RQ は円Sの接線であるから, ∠QBR=∠シ である。 よって, AQBRと シは相似である。シに当てはまるものを、次の⑩~③の うちから一つ選べ。 O APQ ス したがって, CR= QR である。 tz また, 直線 RQ は円Sの接線であり, B,Cは点 R を通る直線と円Sの交点であ るから, QR= ソタ チ である。 解答 AB=4√2, BC=CA=4より △ABCは タイムライン ② BRQ 公開ノート 107 線分の長さを求めるとき, 三角比の知識を利用することがある。 40% 4√2 ③ CQR ・三角形の外接円の半径(直径) 正弦定理 (21) - 2辺とその間の角から残り1辺を求める→余弦定理 (22) 進路選び all 35 ? Q&A 編集 7時間前 ( 第3章) 閉じる マイページ

回答募集中 回答数: 0
数学 高校生

「シ」が分かりません 緑チャートの問題です 解説お願いしますm(_ _)m

116 第6章 図形の性質 重要 例題25 平面図形と三角比 △ABCにおいて, AB=4√2, BC=CA=4 とする。 線分 AC を 1:3に内分す る点をPとし, 3点 B, C, P を通る円Sと線分ABの交点のうちBでない方を Q とする。 また,円Sの点Qにおける接線と直線BCの交点をRとする。 このとき, BP=アである。ここで 線分BP は円Sの直径であり, I√ である。 カ ∠CBQ=イウであるから, CQ= DN また, 直線 BQ と直線 CP が点Aで交わり, 4点 B, C, P, Q は同一円周上にあ □ケ√コ である。 よって, BQ= サ √キ である。 るので, AQ= ク 次に,直線 RQ は円Sの接線であるから,∠QBR=∠シ である。 よって, AQBRとシは相似である。シに当てはまるものを次の⑩~③の うちから一つ選べ。 O APQ @ BQC したがって, CR= QR である。 また, 直線 RQ は円Sの接線であり, B,Cは点 R を通る直線と円Sの交点であ 1 るから, QR= ソタ チ である。 1:1-30:08 POINT! DA 0A- ス セ ② BRQ 線分の長さを求めるとき, 三角比の知識を利用することがある。 解答 AB=4√2, BC=CA=4より, ABCは . 三角形の外接円の半径(直径) → 正弦定理 (21) ・2辺とその間の角から残り1辺を求める→余弦定理 ③ CQR 4√2 QA (第3章) 基22)

回答募集中 回答数: 0
数学 高校生

84. 解説6行目からの、 角PRB=90°,角PMB=90°より 4点P,B,M,Rが一つの円周上にある理由がわかりません。

434 00000 基本例題 84 円に内接する四角形の利用 二等辺三角形でない △ABCの辺BCの中点を通りBCに垂直な直線と、 △ABCの外接円との交点を P, Q とする。 P, Q から ABに垂線PR, QS をそ れぞれ引くと, ARMS は直角三角形であることを示せ。 指針> ARMS をかいてみる (解答の図) と, M=90° すなわち ∠R+ ∠S=90° となりそうだが,これを直接示すことは困難。 そこで, 前ページと同様に, かくれた円を見つけ出し, 円周角の定理から等しい角を見つける 方針で進める。 特に, かくれた円をさがすには, 直角2つで四角形は円に内接する こと (右図)を利用するとよい。 CHART 四角形と円 直角2つで円くなる 解答 PQは弦 BC の垂直二等分線であるから, △ABCの外接円の直径で ∠PBQ=90° ゆえに ∠BPM + ∠ BQM=90°•••・・・ 口 ∠PRB=90° ∠PMB=90° であるから, 4点P, B, M, Rは1つの円周上にあっ て ∠BPM=∠BRM 同様に ∠BSQ=90°, ∠BMQ=90° であるから, 4点S, B, Q, Mも1つの円周上にあって ∠BQM=∠RSM B M Q A ① ② ③ から ∠BRM + ∠RSM=90° したがって, ARMSは∠M=90°の直角三角形である。 C 直径を弦とする弧の円周角 は90° 100 X 円周角の定理 基本83 ③は、円に内接する四角形 SBQM の内角と外角の関 係から。 検討 上の例題では,②,③から △PBQSARMS (2角相等) よって ∠RMS=∠PBQ=90° と進めてもよい。 なお、4個以上の点が1つの円周上にあるとき, これらは 共円であるといい。これらの点を 共円点という。上の例題では, 点P, B, M, R; 点 S, B, Q, M がそれぞれ共円点である (p.444 3 も参照)。 ∠A=60°の△ABCの頂点 B C から直線CA, ABに下ろした垂線をそれぞれ 三角形である 練習 3 84 BD, CE とし, 辺BCの中点をMとする。 このとき, ADMFは正三角 ことを示せ。

回答募集中 回答数: 0
1/6