学年

教科

質問の種類

数学 高校生

(2)って何故このようになるのでしょうか

130 第2章 2次関数 Check 例題 69 最小値の最大・最小 *** 例題 7 (1) y= (2) y= 岐阜大・改) (ア (イ は実数の定数とする. 本の関数f(x)=x+3x+mmの定数における最小値を おく. 次の問いに答えよ. ただし, m (1) 最小値g をmを用いて表せ. (2)の値がすべての実数を変化するとき, gの最小値を求めよ. 考え方 (1) 例題 68と同様に考える. 軸が定義域に含まれるかどうかで場合分けする。 (2)(1)で求めたg をmの関数とみなし, グラフをかいて考える。 9432 32 解答 (1)f(x)=x2+3+m=xt- +m- グラフは下に凸で, 軸は直線 x=- (i) +222のとき 7 つまり,<- のとき グラフは右の図のようになる. したがって,最小値 g=m²+8m+10(x=m+2) 3 (ii) m≦! ≦m+2のとき 2 つまり、1ma12のとき 3 場合分けのポイント 例題 68 (1) と同様 NT mm+2 小太郎 322 2 グラフは右の図のようになる. したがって, 最小値 最小 m m+2 9 g=m- x=- 4 3 x= 2 「考え方 y お 解答 (1 (iii) m>-- のとき グラフは右の図のようになる。 したがって,最小値 g=m²+4m (x=m) (2)(1) より,gmの関数とす ると,グラフは右の図のよう になる. -4 72- 3 最小 mm+2 94 2 (iii) (vi) m軸,g軸となるこ 注意する よって,gの最小値は, (i) -6(m=-4 のとき) 10 m 15 大気 (ii) 4 23 小 最小 4 F 練習 *** を求めよ. 69g をmを用いて表せ. また, m の値がすべての実数を変化するとき,gの最大値 xの関数f(x)=2x2+3mx-2mの0≦x≦1 における最小値をgとするとき *

未解決 回答数: 1
数学 高校生

最後のd^2からdを考える際、X=3はそのままなのに、18は3‪√‬2になっているのは何故ですか?

18 基本 例題 67 最大 座標平面上で,点Pは原点Oを出発して, x軸上を毎秒1の速さで点 (6,0 0まで進む。この間にP, Q間の距離が最小となるのは出発してから何秒後 まで進み,点Qは点Pと同時に点 ( 0, -6) を出発して,毎秒1の速さで原点 か。また,その最小の距離を求めよ。 CHART & SOLUTION 基本 t秒後のP, Q間の距離をd とすると,三平方の定理からd=f(t) の形になる。ここで f(x)の最大・最小 平方したf(x) の最大・最小を考える d0 であるから,d=f(t)が最小のときdも最小となる。 解答 0≤1≤6 出発してからt秒後のP, Q 間の距 離をdとする。 P, Qは6秒後にそ れぞれ点 (6,0), (0, 0)に達するか ・① ら YA 6 x このとき, OP=t, OQ=6-t であ るから,三平方の定理により d2=12+(6-t)2 =2t2-12t+36 =2(t-3)2+18 tのとりうる値の範囲。 点Qのy座標は t-6 基本形に変形。 ① において, d は t=3 で最小値18 をとる。 d0 であるから,dが最小となるときdも最小となる。 よって, 3秒後にP,Q間の距離は最小になり,最小の距離は √18=3√2 軸t=3は①の範囲内。 この断りは重要! INFORMATION dの大小はdの大小から 例題では,d=√2+62 の根号内の a2+62 を取り出して まずその最小値を求めている。 これはd>0でd が変化す るなら, dが最小のときも最小になるからである。 右のグラフから, 大B2 (x≥0) d² A2 A≥0, B≥0, d≥0 * Ad≤B A²≤d²≤B² つまり,d≧0 のときdの大小はdの大小と一致する。 0 Ad B X 小 大

未解決 回答数: 0
1/257