学年

教科

質問の種類

数学 高校生

丸で囲んだ所の解法について、 基本例題は普通に解けました、ですが練習問題だとは正しい答えは出せません。 どうしてでしょうか。

h これ 係数と fla- 絶対値を含む不等式の場合分けをしない解法 f(x) 以下では,第2章 「集合と命題」 の内容も含むため、その学習後に読むことを推奨する。 ||x|<c-c<x<c 絶対値を含む不等式は、 場合に分けて解くのが大原則であるが, 例題41 (1)~(3)6 ) | | x/ > c = x <- c & fc<x |A|<B⇔-B<A<B 次の不等式を解け。 (1) x-1|+2|x-3|≦11 (z)を微分するという. また. 基本 例題 42 絶対値を含む1次不等式 (2) ①①①①① ((1) 西南学院大, (2) 大阪経大) (2)|x-7|+|x-8|<3 基本41 (1) x-310 x-320 120円 指針 (1) 2つの絶対値記号内の式が0となるxの値は x=1,3 よって, x<1, 1≦x<3, 3≦xの3つの場合に分けて解く。 (2)2つの絶対値記号内の式が0となるxの値はx=7,8 よって, x<7, 7≦x<8, 8≦xの3つの場合に分けて解く。 73 不等式の形によっては, により、場合分けをしないで解くこともできる。 (cは正の定数)を利用す ここでは、cが一般の文字式の場合、 つまり x Date A>BAK-BまたはB<A |x-4|=max (x-4, 4-x) 実数 α, bのうち大きい方 (厳密には小さくない方) を max (a,b)と表すと ⇒ max(ヌ-11-x)+2max(x-3.3-x) 例1 x-4/<3x⇔-3x<x-4<3x <) max13x-7-x+5 ・1-5-3x+7)=11 -lx-4|<3x max (x-4, 4-x)<3x よって 一般に,xが実数のとき|x|=max (x, -x)である (*)を示す。 ⇔x-4<3x かつ 4-x<3x x-4<3xx-4>-3x cas ⇔-3x<x-4 <3x 補足条件p: 「x-4|<3xかつ 3x≦0」, 条件g: 「-3x<x-4<3x かつ 3x≧0」 を満たす 体の集合はともに (空集合) である。 30の場合にも(*)は成り立つ。 例2 x-4>3x⇔x-4<-3x または 3x <x-4 ...... (空集合)は任意の集合の部分集合であるから, g, g⇒pはともに真とない (**) を示す。 17.x-11+21x-31=11 max(+2(3)、X-1+213-x)、1-x+2(x-3)(x+2(3-x) ≦11) 4 3x-7311 かつ一が≦11かつ×5≒いかつ-3x+7≦11 27かつ 4 -6 16 X3-6かつ16から水3-3 4 ミカミワ lx-4|>3xmax (x-4, 4-x)>3x 「a, bのうち大きい方よ ⇔x-4>3x または 4-x>3x さい」とき,c<a<b,c<b いう場合以外に,a<e<b ⇔x-4>3x または x-4<-3x ⇔x-4<-3x または 3x <x-4 b < c <a という場合がある。 [補足] 3x<0の場合, x-4>3%は常に成り立ち、 「x-4-3x または3x<x-4」も常に甘 立つ。 よって, 3x < 0 の場合にも(**)は成り立つ。 [参考] 絶対値を含む式が2つある場合について,上で紹介した記号 max を用いると |A|+|B⇔max(A,-A)+max (B,-B) max(A+B, A-B, -A+B,-A-B) であるから,Cの正負に関係なく、次のことが成り立つ。 [A]+[B]<CA+B<C かつ A-B<Cかつ A+B<Cかつ-A-B<C [A]+[B]>CA+B>CまたはABC または A+B>CまたはA-B>C (2)1-7+12-81-3 max (7-7. 7-x) + max (x-8 8-X) <3 max(x-7+7-8、メー7+8-x、ワース+スー8、ワーメな火)<3. max(2x-15,1,-1,-2x+15)<3 よって、 2x-15くろかつ1cろかつてくろ、かつ-2x+153 x9 かつ46 6 < x < 9.

未解決 回答数: 1
数学 高校生

一次不等式の問題(2)です。 (a+2)x<4がx<4になるようにするんですけどどうして毎回場合分けしないといけないんですか。この場合だったら場合分けしたくてもすぐにa=-1って出て他の値は当てはまらないってすぐわかると思いました

重要 例題 38 文字係数の1次不等式 (1) 不等式a(x+1) >x+α を解け。 ただし, αは定数とする。 000 (2) 不等式 ax<4-2x<2x の解が1<x<4であるとき, 定数αの値を漁 (2)類駒澤大] 基 基本34人 個す 指針 文字を含む1次不等式 (Ax > B, Ax <B など) を解くときは,次のことに注意数と A=0のときは、両辺をAで割ることができない。 AK0 のときは, 両辺を4で割ると不等号の向きが変わる。いうと指 (1) (a-1)x>a (a-1) と変形し, a-1>0, a1=0,α-1<0の各場合に分けて (2)ax<4-2x<2xは連立不等式 ax<4-2x 4-2x<2x と同じ意味。 まず,Bを解く。 その解と A の解の共通範囲が1<x<4となることが条件。 文字係数の不等式 割る数の符号に注意 0で割るのはタ CHART (a-1)x>a(a-1) [1] α-1>0 すなわちα>1のとき ① x>a まず, AxBO ①の両辺を で割る。 不等号の 0 > 0 は成り立たな 負の数で割ると の向きが変わる。 (1) 与式から 解答 [2] α-1=0 すなわち α=1のとき これを満たすxの値はない。 ①は 0x0 変わらない [3] α-1 <0 すなわち α <1のとき a>1のとき x>a, x<a よって a<1のとき a=1のとき 解はない, x<a 検討 (2) 4-2x<2x から -4x <-4 A=0のときの不 よって x>1 ゆえに,解が1< x < 4 となるための条件は, Ax>Bの解 ax <4-2x ...... ①から (a+2)x <4 ...... ① の解が x<4となることである。 [1] α+2>0 すなわち α> - 2 のとき,②から ② よって =0のとき、不等 0.x>B B0 なら 解はない なら解はすべ 4 x< よって a+2 4 a+2 =4 [I] 実数 ゆえに 4=4(a+2) よって a=-1 両辺に α+2 (≠0) これはα>-2を満たす。不 けて解く。 [2] α+2=0 すなわち α=-2 のとき,②は 0·x <4 よって、解はすべての実数となり、条件は満たされな 04は常に成り立 [3] α+2<0 すなわち α <-2 のとき,②から ら,解はすべての 4 a+2 このとき条件は満たされない。 x<4と不等号の [1]~[3] から a=-1 違う。 練習 (1) 不等式ax>x+a2+α-2を解け。 ただし, αは定数とする。 ④ 38 (2) 不等式

回答募集中 回答数: 0
数学 高校生

数1の一次不等式の問題⑴です。a-1じゃなくてaで考えてないのはなぜですか?aで考えてもいけますか?

重要 例題 38 文字係数の1次不等式 (1) 不等式a(x+1)>x+αを解け。 ただし, αは定数とする。 0000 (2) 不等式 ax<4-2x<2xの解が1<x<4であるとき, 定数αの値を求めよ。 [(2) 類 駒澤大] 基本 34 重要 指針 文字を含む1次不等式(Ax> B, Ax<B など)を解くときは,次のことに注意。 ・A=0のときは,両辺を4で割ることができない。 一般に、「0」で割る」 •A0 のときは、両辺を4で割ると不等号の向きが変わる。いうことは考えない (1) (a-1)x>a(a-1) と変形し, a-1>0, a-1=0, a-1<0の各場合に分けて ax<4-2x ...... A (2) ax<4-2x<2x は連立不等式 と同じ意味。 4-2x<2x B まず,Bを解く。 その解とAの解の共通範囲が1<x<4となることが条件。 CHART 文字係数の不等式 割る数の符号に注意 0で割るのはダメ (1) 与式から (a-1)x>a(a-1 ...... ①まず, Ax>Bの形に [1] α-1>0 すなわちα>1のとき x>a 解答 [2] α-1=0 すなわち α=1のとき これを満たすxの値はない。 [3] α-1 <0 すなわち α <1のとき 「α>1のとき x>a, よって (2) 4-2r a=1のとき 解はない, a<1のとき x <a ①は 0.x>0 sl>S ① x<a>x ①の両辺をα-1 (>0 で割る。 不等号の向 変わらない。 <0> 0 は成り立たない 負の数で割ると、不 の向きが変わる。 検討チ

未解決 回答数: 1
1/33