学年

教科

質問の種類

数学 高校生

解説お願いします

A-1 したか? 1/2(+1) を出していたのですが,それはわかりま セ: はい わかりました。 でも、それ以外にも導出する方法はある のですか? でも少し話をしましたが、一般的には、 (k+1)_k=ア 2+ウk+1... ① イ の恒等式を利用します。 具体的には、 ① 式に順に 1,2,3 を代入し, 以下のように縦にそろえて 加えてると X-14 -14 ア.13+ イ・12+ ウ・1+1 31-21 ア ・2+ イ -2 + ウ・2+1 ア ・33+ イ・32+ ウ.3 + 1 +1) ア + イ n2+1 • ウn+1 (n+1)-19 アイ k+ k + Σk+21 1 Jk-1 k-1 上式を 1 (n+1 イ =1 ア J=1 k- Je=1 割 整理し、右辺の計算をすると,2112m(n+1)" を弾くこと できますね。 k=1 上記のような方法で、 同じ項を消して和を導く問題はいろいろや りましたね。 例えばこんな問題も同じ方法で解けるのですよ。 1 1 (1) 数列{an) が an+1-ax=- を満たす 60 (+1)+3) ときの一般項を求めよ。 数列 [4.} の階差数列 by s+1-4. の一般項が与えられているね。 n≧2 のときにam=a1+2bk となることから,数列{an}の 一般項が求められるね。 k=1 1 1 = H (+1)+3) n+1 n+3 となるから, =2のとき, カ n + キ an + オ 60 (+1) +2) ク n2+ケn コ ① サ + 1X+2) であり,これは=1のときも成り立つから, 4, は①となるね。 では、追加です。 1 1 _ (2) 数列{a} = Ca4-0,- #³ c₁ = 60 を (+1)+3) 満たすときの一般項を求めよ。 問題 (1) と同じように, 数列{Cx) の階差数列を dw=Cw+1 - Cm と して,n≧2のときに + 2 となることから,一般項 k=1 が求められないかな。 1 1 1 +1+2) (n+1) (n+1) +2) と変形できるわ なるほど。それを利用して、数列 (c.)の一般項を求めてみよう。

回答募集中 回答数: 0
数学 高校生

数A 組み合わせ カの問題がなぜ答えのようになるのかが分かりません。 教えていただけると嬉しいです!

8 以下は自然数, は以下の自然数とする。 次の先生と百まんさん に当てはまる記号や数式, 数字を とイヌワシ君の会話を読み、 答えよ。 大間 8 は解答欄に答のみを記入せよ。 先生:C の値をどのように考えたらいいと思う? 百まんさん: n個から0個とる組合せの総数なので0じゃないのかな。 イヌワシ君:まって, 確か。 Po=1,0!=1 と定めたはずだよ。 このことと, ア C, C,= 7! と表されることから,Co= イ と定め るといいんじゃないかな。 先生:その通り。 他の考え方もあり, 例えば6人から4人を選ぶことは, 選ば ない2人を決めることと同じなので, 6C4 = C2 の等式が成り立ちます。 一般に,n個から個取る組合せの総数は, n個から ウ個取る組 合せの総数と同じなので,nC=n = "q ・①の等式が成り立 (ウ) つ。 これより C の値は I と等しいと考えることが出来るので Cは(イ)と言えます。 百まんさん: ①の他にもCに関連する等式はありますか? 先生: 1 C, C,+C1-1 ・・② という等式が成り立ちます。 まんさん:例えばC=C+オ となるはずですね。確かめてみま す•••••• ほんとだ, 確かに両辺とも126になっています。 先生 ②の等式は次のように説明出来ます。 1.2.3.. +1のn+1枚 のカードから枚取る組合せを のカードに注目して、次の2つの 組合せのグループに分けます。 (A) 1 のカードを含んでいる組合せのグループ (B) のカードを含まない組合せのグループ (A) は カ通りあり、(B) はキ通りあります。 n+1枚のカードから枚取る組合せは必ず (A) か (B) のいずれかの グループに含まれているので,②の等式が成り立ちます。 イヌワシ君: なるほど。 この考え方を応用すれば新しい等式を作ることが出来 そうです。 を2以上の自然数として,n+2枚のカードからr枚 取る組合せを (A) 1 を含む組合せ (B) 1 を含まず 2 を含む組合せ (C) I も2も含まない組合せ に分類して考えると, 新しい等式が得られるのではないで しょうか。 先生 さすがイヌワシ君。 よく出来ました。

回答募集中 回答数: 0
数学 高校生

(3)と(4)がわからないです!お願いしますm(_ _)m

基礎向 96 倍数の規則 ①から⑥までの数字が1つずつかかれた6枚のカードがある。 これから3枚を選んで並べることにより、3桁の整数をつくる このとき,次のような整数はいくつあるか. (1)2の倍数 3の倍数 4の倍数 6 の倍数 ある整数がどんな数の倍数になっているかを調べる方法は,以下の 精講 ようになります. これを知らないと問題が解けません。 ・2の倍数:一の位の数字が偶数 ・3の倍数 各位の数字の和が3の倍数 ・4の倍数: 下2桁の数が4の倍数 ・5の倍数:一の位の数字が 0 または5 ・6の倍数:一の位の数字が偶数で,各位の数字の和が3の倍数 X Zak ・8の倍数:下3桁の数が8の倍数 9の倍数:各位の数字の和が9の倍数 10の倍数:一の位の数字が 0 30 (2)から6までの数字から3つを選んだとき,その和が3の倍数にな る組合せは, (1, 2, 3), (1, 2, 6), (1, 3, 5), (1, 5, 6), (2, 3, 4), (2, 4, 6), (3,4,5),(4,5,6)の8通り. そのおのおのに対して並べ方が3! 通りずつ. .. 8×3!=48 (個) 右になるほど大きく なるように拾ってい く(規則性をもって) (3)から⑥までの数字から2つを選んで2桁の整数をつくるとき, これが4の倍数になるのは, 12,16,24,32,36,52,5664の8通り。 6-2 そのおのおのに対して,その左端におくことができる数は4通りずつ。 .. 8×4=32 (個) (4)(2)の8通りのおのおのについて,一の位が偶数になるように並べる 方法を考えればよい. (1,2,3)(1,5,6,3,4,5) は偶数が1つしかないので、そ れぞれ2個ずつ. (1,2,6,2,3,4,4,5,6) は偶数が2つあるので,それぞ れ, 2×2×1=4(個) ずつ. (2, 4, 6) はすべて偶数なので, 3!=6(個). よって, 2×3+4×3+6=24 (個) (1)一の位が2, 4, ⑥のどれかになるので,まず,一の位から考えます . ポイント 整数が2の倍数, 3の倍数, 4の倍数, 5の倍数, (条件のついた場所を優先) (2)3の倍数になるような3つの数の組が1つ決まると並べ方は3!通りあり ます. (3) 2桁の数で4の倍数であるものを1つ決めて、その左端にもう1つ数字を おくと考えます. 6の倍数,8の倍数, 9の倍数, 10の倍数 になる条件は覚えておく 解答 (1) 一の位の数字の選び方は2, 4, 6の3通りで,このおのおのに対 して百の位、十の位の数字の選び方は sP2=5×4=20 (通り) 演習問題 96 6個の数 0 1 2 3 4 5 の中から4個の異なる数字を選び, そ れらを並べて4桁の整数をつくるとき,25の倍数は何個できるか、

回答募集中 回答数: 0
数学 高校生

数学1A (2)からが分かりません💦 教えていただけると幸いです( . .)"

太郎 : でも, x0, 1,2,…と代入して調べていくのはちょっと大変だから、別の方法はないかな。 例えば、①を変形して, x=- 1-17y ③ として考えてみるよ。 xは整数だから ③ にお 7 ける17yは7で割ると余る数だね。 花子: 面白い考えだね。 それなら17を7で割ると余りが3だから、それを利用すると,③は, 1+7(-2y)-3y=-2y+1-31 となって, 3yは7で割ると 余る数だね。 太郎 : すると, 17y や 3y と同様に,yは7で割るとオ 余る数ということかな。 花子: 本当かな。 yを7で割った余りをとすると, lを整数として, y = 71+ ができて、そこから考えるとyは7で割るとキ余る数だよ。 x= (2) オ キに当てはまる数を求めよ。 また, ⑩~③のうちから一つ選べ。 m(mは整数) ①mmは0以上6以下の整数) 7m (mは整数) ③7mmは0以上 6以下の整数) 太郎 : y = キ を③に代入してみると, x=-クケ つだね。 花子: y = 7l+ト キを③に代入してみると, 方程式 ①の整数解は x=- ウエルークケ y= ......4 (Iは整数) となるね。 太郎: あれ、②と④は異なるから、どちらか一方は間違いなのかな。 花子 : どちらも正しい答えだよ。 コ という関係になっているよ。 太郎: なるほど。(a) 7セイ は7で割ってキ余る数ということだね。 整数解の表し方は (b) いろいろあるけれど、意味は同じなんだね。 整数とする ⑩7n+10 ①7m+20 x== (3) クケに当てはまる数を求めよ。 また, つ選べ。 Ⓒ1=k ① 1=k+1 ② l=k-1 3 1=-k (4) 下線部(a)について、7で割ってキ余る数を、次の⑩~⑤のうちから一つ選べ。 ただし、nは サ ウエ k+ クケ クケ ウエk+ クケ ウエ k- に当てはまる最も適当なものを、次の 7n+30 3 7n-10 4 7n-20 5 7n-30 (5) 下線部(b)について, 方程式 ① の整数解として正しいものを、次の①~③のうちから一つ選べ。 た だしは整数とする。 ⑩ x = - ①x= ウエ k- ②x=1 y=7k- キ y=-7k+ キ y=-7k- キ と表すこと クケ + y=+ ア, y=7h+キ は方程式 ① の整数解の一 に当てはまるものを、次の⑩~③のうちから一 (配点 15) 公式

回答募集中 回答数: 0
数学 高校生

【至急願い】 この問題がわからないので、解説していただけないでしょうか。 明日までの課題で、困っています。

14 ア 難易度 ★★ 関数 f(x) = ax²+bx+cがあり、a,b,cは定数で, a≠0 とする。 太郎さんと花子さんが, y=f(x)のグラフがx軸と異なる2点で交わるときについて考えて いる。 b 2a 太郎: f(x)=0 の判別式は62-4ac, y=f(x) のグラフの軸の方程式はx=- だね。 花子: y=f(x) のグラフがx軸と異なる2点で交わるための条件は, ア 太郎: α>0のとき, y=f(x)のグラフがx軸の正の部分と異なる2点で交わるための条件 は何かな。 花子: イ かつ ウ かつ I だね。 太郎 : じゃあ, a>0のとき, y=f(x) のグラフがx軸の正の部分と負の部分のそれぞれと 交わるための条件は何かな。 花子:「62-4ac>0」かつ「一号>0」かつ「f(0) <0」じゃないかな。 ものを繰り返し選んでもよい。 また, 答の順序は問わない。 06²-4ac > 0 >1 太郎: オ の条件はなくてもいいね。 花子:なるほど。じゃあ, a <0のときに, y=f(x)のグラフがx軸の正の部分と負の部分 のそれぞれと交わるための条件は キ だね。 ⑤ b2-4ac < 0 b 2a 目標解答時間 キ に当てはまるものを次の①~⑦のうちから一つずつ選べ。 ただし、同じ ウ および カ の解 <1 b 2a ② ⑥ f(0) > 0 >0 I 8分 b 2a (3 ⑦ f(0) < 0 関連する基本問題 ▼ b 2a <0 オ だね。 25

回答募集中 回答数: 0
数学 高校生

この太郎花子問題の理解が少し難しいため、解説していただきたいです。 どうぞよろしくお願い致します。

14 4 難易度 ★★ 関数 f(x) = ax²+bx+cがあり, a,b,cは定数で, a≠0 とする。 太郎さんと花子さんが,y=f(x)のグラフがx軸と異なる2点で交わるときについて考えて いる。 b 花子:「62-4ac > 0 」かつ「一品>0」 かつ 「f(0) <0」じゃないかな。 2a ア ものを繰り返し選んでもよい。 また, 答の順序は問わない。 0b²-4ac > 0 ① 62-4ac < 0 b ⑤ // <1 5 2a b ->1 2a 太郎: f(x)=0 の判別式は62-4ac, y=f(x) のグラフの軸の方程式はx=- だね。 花子: y=f(x) のグラフがx軸と異なる2点で交わるための条件は, ア 太郎: α>0のとき, y=f(x)のグラフがx軸の正の部分と異なる2点で交わるための条件 は何かな。 花子: イ かつ ウ かつ I だね。 太郎 : じゃあ, a>0のとき, y=f(x)のグラフがx軸の正の部分と負の部分のそれぞれと 交わるための条件は何かな。 目標解答時間L - - 太郎: オ カ の条件はなくてもいいね 花子:なるほど。じゃあ, a <0のときに, y=f(x)のグラフがx軸の正の部分と負の部分 のそれぞれと交わるための条件は | キ だね。 2a >0 キ に当てはまるものを次の⑩〜⑦のうちから一つずつ選べ。ただし、同じ ウ および カ の解 ⑥ f(0) > 0 I 8分 b 2a (3 ⑦ f(0) <0 b <0 | 関連する 基本問題 ▼ オ 2a ・だね。 25

回答募集中 回答数: 0
数学 高校生

5️⃣(4)を補集合を用いないでとく方法はありますか?

子ども4人を1列に並べるとき、次のような並べ方は何通り あるか。ただし、途中式や説明等を含めて記述すること。 (9点) (1) 子どもが4人続いて並ぶ。 5!×4!=5×4×3×2×1×4×3×2×1 2680 (2) 両端が大人である。 2!×6=2×1×6×5×4×3×2×1 = 1440 26801 (3) 両端の少なくとも1人は子どもである。 1440通り 5 先生と生徒2人 (メタ君, セコイアさん) の3人の会話を読みながら, 次のアセには適当な数字を, A, B には適当な 四則演算子(+, -, X, ÷ ) を右の解答欄に答えよ。 ただしア セルには数字が一つずつ対応して入り、同じカタカナ の枠には同じ数字が入る。 (24点) メタ : 今週出された週末課題は中々難しかったな~。 セコ: あ ! 忘れてた! どんな問題だったっけ・・・。 先生 : 出された課題はきちんと取り組まないと力にならないよ。 今回は特別に問題をもう一度教えてあげよう。 2 問題 同じ大きさの6枚の正方形の板を1列に並べて下のような掲示板 を作りたい。 赤, 青,緑のペンキを用いて, 隣り合う正方形どおし が異なる色となるように,この掲示板を塗り分ける。 ただし塗り 分ける際は、 すべてのペンキの色を使わなくてもよい。 (1) 塗り方は全部で何通りあるか。 _2) 赤色に塗られる正方形が3枚あるのは何通りか。 3) 赤色に塗られる正方形が1枚あるのは何通りか。 日) 赤色に塗られる正方形が2枚あるのは何通りか。 メタ:このような問題はそれぞれの板の塗り方が何通りずつあるかを 考えていくのがポイントになるよね! 先生:その通りです。 今回は板に左から a,b,c,d,e, fと名前を付けて 考えるといいよ。では(1)の問題から解いていこう。 36 96 19 a b ク ① ク ① : a I 1 1 セコ:まずαの板を塗る塗り方は「ア通りあるね。 同様にbfの 板の塗り方を考えていけば,塗り方は全部でイウ通りあるね。 メタ:そうだよね! 続いて(2)は通りあるね 先生 素晴らしい! () セコ : (3)は 赤色をどの板に塗るかによって複数の場合に分けられるね。 まずαの板が赤色に塗られる場合はカ通りあるわ。 d f 次にの板が赤色に塗られる場合はキ通りあるよね。 01 (2) 次にcの板が赤色に塗られる場合は・・・。 メタ ちょっと待って!cの板が赤色に塗られる場合は, 20 クの板が赤色に塗られる場合と同じ考え方で求められるよね。 ~ メタ君, セコイアさ A X 8 5 同じようにd,e, f の板が赤色に塗られる場合は, またはbの板が赤色に塗られる場合と同じ考え方になるよ。 セコ: 本当だ!じゃあカ通りになるのは全部でケパターンあり、 CHRITTSAG キ通りになるのは全部でコパターンあるってことか!入 だから(3) の答えは, hod(s) (① A ケ B キャ A コ=サン通りだ。 メタ : それにしても (4) は場合分けが大変だ… 先生 (4) は複数の場合に分けて考えることも可能だけれど、 今まで 求めてきた(1)~(3)の答えを活用して考えることもできるよ。 「補集合」 を利用する。 これがヒントだよ。 セコ: なるほど! 考えてみます! メタセコ : (4) の答えはスセ通りになります!Aパパが 先生:正解です!2人ともよく頑張ったね! 2 サ C 2 12 HOT 中~ 6 2 160% 8 688 4774 ħ + 2 ス 4 9 B 26 3 34 IWN-m-8 87 0 87 17 問題は 1

回答募集中 回答数: 0
1/5